
m o c k i n g b o a r d

Csa2 FAQs-on-Ground resource file: R027MOCKBD.DOC
The Csa2 (comp.sys.apple2) Usenet newsgroup Apple II FAQs
originate from the Ground Apple II site. Admin: Steve Nelson
ref: ftp://ground.ecn.uiowa.edu/2/apple2/Faqs/

This document was scanned and put through Corel's OCR. The application
had a difficult time distinguishing between "o's" and zeroes and "i's" and ones.
If you encounter any problems please e-mail me at laserdog@bright.net.

Mary Sauer (Laserdog) June 17, 1999

0-2 ... 0-3

•••CONTENTS

PREFACE 0-1
CONTENTS 0-2
SYSTEM REQUIREMENT 0-4
MOCKINGBOARD DIAGRAM 0-5
INSTALLATION 0-6
INTRODUCTION TO THE MANUAL 0-8
SPEECH 1-1
 Add Inflection with the Director's Cues 1-2
 Add Texture to the Voice 1-5
 Soft to Loud Voice 1-6
 Low to High Voice 1-6
 Slow to Fast Voice 1-7
 Alter the Voice Quality 1-7
 Pulling it All Together 1-8
 Save the Words Created 1-8
 The Rule Table 1-9
A Word About Phonemes 1-9
How To Make Changes To the Rule Table 1-10
Let's Hear It 1-12
Locate the Source of the Problem 1-13
How to Read a Rule 1-13
Create a New Rule 1-17
Make Corrections 1-19
Save the Changes 1-20
Delete a Rule 1-21
Other Useful Commands 1-22
One Final Instruction 1-23
SOUND 2-1
 A Few Words About the Sound Utility 2-1
 What You Need to Know About Sound 2-2

 MOCKINGBOARD "Knobs" 2-3
 Getting Acquainted 2-3
 Noise Only Sound Effects 2-7
 Turn On Noise Only 2-8
 Setting Amplitude 2-9
 What Makes a Train Sound Not a Gunshot? 2-9
 How Fast is the Train Going? 2-10
 Change a Train into a Helicopter 2-11
 Change a Helicopter into a Gunshot 2-11
 Tone Only Sound Effects 2-11
 Start Fresh with a Clean Screen 2-13
 Turn On Tone Only 2-13
 Set the Amplitude 2-13
 Create Musical Notes 2-13
 Play a Note 2-14
 Play a Chord 2-14
 Play Two Chords 2-14
PROGRAMMING 3-1
 The Sound Chips 3-2
 How the Sound Parameters are Set on the Chip 3-2
 Summary of Primary Routines and Table Access Routine 3-5
 Siren Sound Effect 3-6
 The Speech Chips 3-12
 Using Text to Speech and the Rule Table in Your Program 3-15
APPENDIX A Phoneme Charts A-1
APPENDIX B Programmable Sound Generator Registers A-3
APPENDIX C Noise and Tone Enable Register A-4
APPENDIX D Envelope Shape Register A-5
APPENDIX E Equal Tempered Chromatic Scale A-6
APPENDIX F Assembly Language Program Listing A-9
LIMITED WARRANTY

0-4

SYSTEM REQUIREMENT
Apple II, II+ or Ile
48K RAM
1 Disk Drive
Monitor
2 External 8 ohm Speakers

CAUTION
The demonstration disk included in the package contains a wide variety of
demonstrations and utilities which uses most of the available disk space. Utilities such as
the Rule Editor for the text to speech portion and Sound Utility allow you to save
additional files. If you plan to use the utilities, please separate the sound and speech
portions so that you will have adequate room to expand. The following procedure should

be followed. Catalog your disk and note the file name "S/ONLY." Below this file are all
the files related to the speech demonstration. Save these files onto a fresh disk with
S/ONLY and use the new disk as a work disk. Your HELLO or file name used to init the
disk should run the file name S/ONLY. Load SPEECH from the new disk and change
line #I 50 to read I 50 END and delete line #75. You may also wish to do the same with
the remaining sound portion and save the original disk as back up. MAKE A BACK UP
DISK BEFORE USING THE UTILITIES.

Included on the demonstration disk are two speech related programs to allow you to enter
unlimited words and have them spoken back. Also, the Text Reader program will read
back any text saved as a text file, not just those created using Text Maker. To use the
Text Reader and Maker, please run Text Reader and enter the file name HELP. This file
was created using Text Maker and will provide you with the necessary instructions to
utilize both programs.

0-5

 MOCKINGBOARD DIAGRAM

 _______ ________________ ________ _
 | | | | | | {3} {4} |_ [5]
 | [1] | | [2] | | [7] | __ __
 |_______| |________________| |________| |6 | |6 |
 |__| |__|
 _______ ________________ ________
[1]		[2]		[7]
_______		________________		________

 |___ [8] ___|
 |___________________|

1. 2-Sound Chip
2. 2-6522 Versatile Interface Adapter
3. Volume Control for Top Row of Sound/Speech Chips
4. Volume Control for Bottom Row of Sound/Speech Chips
5. Audio Cable Connector
6. 2-½ watt Audio Amplifier Chip
7. Speech Chips/Sockets for Speech Chip
8. Gold Placed Edge Connector

 MOCKINGBOARD CABLE
 __
 __|===================================O- RCA Phono Jack
 __|===================================O- RCA Phono Jack
Female mini-molex Shielded audio cables
 plug

0-6

INSTALLATION
We know lots of companies claim a child can install their products. But, what does one
do if no child is available? Sweet Micro Systems has written these installation
instructions for adults.

SETUP

1. Turn off your computer and remove its cover.

2. Discharge any static electricity by touching the metal power supply casing.

3. Remove MOCKINGBOARD and audio cable from the package. Hold
MOCKINGBOARD by its edges. Avoid touching the gold plated edge connector (8).
The oil from your hands may contaminate the connector and cause a poor electrical
connection.

4. Extend the audio cable fully.

5. Connect the female mini-molex plug end of the cable to the audio cable connector (5)
located on MOCKINGBOARD.

6. Insert MOCKINGBOARD into slot 4 of the Apple's peripheral slots located at the rear
of the Apple. Gently rock MOCKINGBOARD until it is properly seated.
MOCKINGBOARD is not slot dependent. While MOCKINGBOARD can be configured
for any slot except Slot 0, the demonstration disk was specifically written for slot 4.

7. Connect the RCA phono jack-ends of the audio cable to the speakers.
MOCKINGBOARD has two ½ watt amplifier chips (6) on board to directly connect it to
your speakers. You may use an external amplifier. If you do so, connect the RCA phono
jack-end of the cable to the stereo amplifier auxiliary inputs.

GETTING STARTED

8.Leave the cover off the computer until you have had a chance to adjust the volume. The
volume control knobs (3) and (4) are grey disks located at the top rear of the board. These
knobs are thumbwheel devices. No tool is necessary to make adjustments, just your
thumb. Simply roll the wheel back and forth to adjust the volume.

0-7
9. Place the demonstration disk in the drive and boot the disk. Select SOUND EFFECTS
DEMONSTRATION from the menu. This demonstration is presented in a menu form.
You may hear the sound effects in any order and as many times as you wish. The sounds
alternate between speakers, that is, the first selection is played on one speaker, the next
sound effect is on the other speaker.

10. Type A for GUNSHOT. Adjust the volume with one of the volume control knobs, (3)
or (4). To lower the volume, roll the knob away from you as MOCKINGBOARD sits in
the computer, or towards you to raise it.

Type B for MACHINE GUN. Adjust the volume with the other volume control knob.
Lower or raise the volume as described above.

The BOMB sound effect jumps from one speaker to the other. Some, like CLOCK, play
continuously until you select another letter. You may also play two sounds at the same
time on separate speakers. A and B will play at the same time, but A and C will not
because they use the same speaker.

11. To return to the Main Menu, press the <ESC> key.

12. Select A from the Main Menu for speech and select A again for a message from
Sweet Micro Systems. If your board has the gift of speech, your message will be audible.

13. If your MOCKINGBOARD has a speech chip, select Text To Speech to type and
have MOCKINGBOARD speak. When MOCKINGBOARD is ready, a question mark
will appear at the top of the screen. Type any word or phrase and then press the return
key. When MOCKINGBOARD has finished speaking what you have typed, the question
mark will reappear. Type some more words or phrases. You may type as many as 239
characters at one time. To return to the Main Menu, type QUIT.

This demonstration disk contains other examples of MOCKINGBOARD's capabilities. In
addition, utilities have been included to allow you to further explore both sound and
speech. Have fun.

In order that you may progress at your own pace, this manual has been separated into
sections. The first section is Speech. Here, you will learn to develop different
personalities for MOCKINGBOARD using interesting expressions and voices. If you
would like to, delve deeper and learn to correct mispronounced words.

0-8
The second section is Sound. learn to develop, modify or completely change sound
effects. Take a ping and change it to a plunk or start with an explosion and change it into
a train. Learn about how MOCKINGBOARD produces sounds and how to create them
from scratch.
The third section is Programming. Learn how to include sound and speech you created
into your own programs. if you don't have a program in mind, you will after you explore
the many possibilities for sound and speech enhancements.

INTRODUCTION TO THE MANUAL
Think of MOCKINGBOARD as the telephone of a friend you wish to call. In order to
call a friend, you need the area code and phone number. During the conversation,
information flows back and forth. Communication with MOCKINGBOARD is almost as
simple as calling someone on the phone.
The concept of communicating to MOCKINGBOARD is often over looked. When you
ran the demonstration, you made sounds flow from your speakers just by pushing a few
keys. Trying to duplicate these sounds in your own programs takes a bit more effort. The
programming is simple; the concepts behind it are not.

Telephones are connected to each other by lines through which our conversations are
transmitted. Since we share lines with others, a direct line must be opened specifically for
the two phones. This line is opened when you dial a phone number and someone picks up
that phone. Communicating to MOCKINGBOARD works the same way.

The circuitry in your Apple allows you to transmit information directly to
MOCKINGBOARD, but a direct line must first be opened. The slot number in which
MOCKINGBOARD resides can be thought of as an area code, The "phone number"
pinpoints a chip on MOCKINGBOARD.

MOCKINGBOARD has two chips which have their own "phone number" and may be
"called" individually. These chips act as a switchboard routing all in-coming and
outgoing "calls" to and from the Apple and MOCKINGBOARD's sound and speech
chips.

You are the director/composer of MOCKINGBOARD sounds and speeches. This manual
will step you through their creation and give you the necessary background information
required along the way. First, we'll create sound/speech using the utilities provided on the
demonstration disk. Then, we'll show you how to use the sounds created in a program.

1-1
SPEECH
Man's ability to articulate sounds for the purpose of communicating ideas distinguishes
him from the rest of the animal kingdom. This ability, which we now take so much for
granted, was once thought to have been conferred upon man by the gods themselves. In
the Book of Genesis, for example, Adam is given the power of speech by the Lord in
order to name the animals, thereby demonstrating his likeness to God. Given such
history, it is not surprising that man perceived the power of speech as an integral part of
his quest for divinity.

As man evolved and had more needs and desires to articulate, a complex system of
speech organs was developed in order to provide a more varied and sophisticated means
of expression. The human voice is now capable of a wide range of sounds from grunts to
operatic cadences. It was only natural that, as man's brainchild, the computer became
more complex and imitative of human abilities, it would reach a stage of evolution which
would require the ability to communicate in a more human fashion.

MOCKINGBOARD gives your computer the power of speech. Like a human, it will read
text aloud pronouncing each word according to a series of rules. These rules are the basis
for Sweet Micro Systems' method of converting text into a code MOCKINGBOARD can
understand.
MOCKINGBOARD will allow you to introduce expression into the voice. Expression is
important to the intelligibility and the meaning of the words spoken. The Sweet text to
speech program automatically sets the speech parameter s for general use and allows you
to introduce stress and intonation to text by using special markers. You may change these
parameters to create interesting voices.

There are many exceptions to standard pronunciation rules. Names are especially difficult
and are frequently mispronounced. Remember how your teacher stumbled through her
class list on the first day of school? How disappointed you must have been if your name
was incorrectly announced to the class!

If MOCKINGBOARD has trouble with your name or names of family members and
friends, you can easily correct it and we'll show you how. We know the name, Robert, is
mispronounced. We will step through the corrections necessary, and in the process tell
you about MOCKINGBOARD's features, capabilities and our method of converting text
into speech.

1-2

A special section explains how to enhance your programs with speech you create using
the Rule Editor or using the text to speech program right in a program of your own
creation.

ADD INFLECTION WITH THE DIRECTOR'S CUES
MOCKINGBOARD is all set to start talking. With a little assistance,
MOCKINGBOARD will express itself with the use of inflection or pitch patterns, and
show emotion. Limited use of inflection is automatically performed by the program. For
example, it recognizes punctuation marks and responds accordingly. You will be able to
employ inflection more creativity as you compose your sentences.

Boot your demonstration disk and select A for speech and then select the Rule Editor
from the Speech menu. You will be asked to SELECT CHARACTER TABLE TO EDIT.
Type A and the A rule table will appear. Type T for Test Mode at ENTER COMMAND.
Now we are ready to proceed.

The cursor, next to the question mark, is ready for you to type in a word. After you type
the word, press the return key. The word will be spoken at an average speed, in an
average voice with minimal variation or emotional coloring. These speech characteristics
have been preset to normally used values. If you would like MOCKINGBOARD to be
more expressive, you may take advantage of its interpretive talents.
MOCKINGBOARD's theatrical abilities are not to be underestimated.

Fine actors, regardless of their talent, require good directors. MOCKINGBOARD may be
directed by inserting special markers into the text as it is typed in. These markers will tell
MOCKINGBOARD when to show emotion, It already recognizes normal punctuation
marks, such as commas, periods and question marks, and will respond with an
appropriate pause, or raise or lower its voice. You may also place emphasis on a
particular word or syllable, by inserting slash key stress markers (/) as cues to indicate
when MOCKINGBOARD should play up a scene.

From the Test Mode, enter the word, "Hello," at the prompt. Think, like a good director,
of the different ways that HELLO can be interpreted. When an actor speaks, he conveys
emotion by changing the pitch, volume, and rate at which he speaks. Press return and
listen. How could you make this word more expressive? Try typing in the following
examples. Each time you wish to clear an entry, type N for new entry. Should you wish
MOCKINGBOARD to repeat itself, type R for repeat. The comments to the right explain

1-3
what effect the markers have on the word. (Note: You do not have to type the question
mark, it will appear automatically.
?HELLO would have no variation in stress

?/HE/LLO would stress HE
?HELL/O/ would stress O
?HELLO? would cause a rise in pitch at the end
?HELLO. would cause a drop in pitch at the end
Other combinations of punctuation marks and stress marks are also possible. Stress
markers generally work in pairs, but you may insert any number of them into a text. The
number of stress markers and their position will determine how each word or syllable
will be spoken. Be experimental!
Try typing the following examples, and listen to MOCKINGBOARD perform.

INFLECTION DIAGRAM 1: DECLARATIVE SENTENCE

Mary had a /li/ttle lamb.

4
3 __
2 ________| \
1 \

MOCKINGBOARD has just described Mary's pet. Diagram 1 shows the inflection
pattern, or the rate of change of pitch, for a basic declarative sentence, which emphasizes
the lamb's size.

The English language has several levels of pitch. Our text to speech method
approximates these levels by using four main pitch levels. These levels are designated by
the digits which appear on the left side of the diagram.

"Mary had a little lamb" is spoken at pitch level two until the first stress marker is
encountered. At the first stress marker, the pitch rises from level 2 to level 3. It will
remain at level three until another marker is encountered. At the second stress marker, the
pitch will glide up or down depending on the final punctuation. A period at the end of a
sentence, as in this example, indicates a drop in pitch. If no final punctuation mark exists,
then a period is assumed.

1-4

lf we want MOCKINGBOARD to show more feeling, we must give it additional
direction. Try typing, "/Mar/y had a/li/ttle lamb."

INFLECTION DIAGRAM 2

/Mar/y had a /li/ttle lamb.
 __
4 | |
3 | __
2 | ________| \
1 \

This diagram shows the change of pitch for a declarative sentence with more than two
stress markers. In this example, the pitch starts at level 3 and rises to level 4 upon
reaching the first marker. The second marker signals a drop in pitch to level 2. Upon
reaching the next pair of markers, the pitch level will again rise and then fall until the
period is encountered.

MOCKINGBOARD's recitation of "Mary had a little lamb" deserves an ovation. The
dual stress pattern was interpreted with greater emphasis on the first pair of markers than
on the second, Such a stress pattern, in which the initial stress is more emphatic than
stresses which follow, is typical of the English language.

Perhaps you would like MOCKINGBOARD to ask some questions about Mary?. Let's
change some of the cues and try some interrogatives. Type "Mary had a/li/ttle lamb?"

INFLECTION DIAGRAM 3: INTERROGATORY STATEMENT

Mary had a /li/ttle lamb?
 ?
4 /
3 ___/
2 ________|
1

If you compare this recitation with INFLECTION DIAGRAM I, you will see that the
performance differs only at the end where the different cue has caused a rise in pitch
instead of a drop. The difference in pitch may appear to be insignificant, but we must
remember that pitch assists us in interpreting a speaker's intent and helps us to recognize
when he is stating or questioning. We are now doubting the lamb's small size.

1-5
The director's cues are actually much more sophisticated than they may appear. The
stress markers not only cause MOCKINGBOARD to change its pitch, but also its
volume, the number of words spoken per second and finally, the voice itself. When a

syllable is stressed, it generally becomes louder, the speech rate slows to make the
syllable longer, and the voice quality changes slightly. You can achieve all of these
theatrical effects simply by typing in normal punctuation and experimenting with the
stress markers.

ADD TEXTURE TO THE VOICE
As Director, you have only begun to utilize MOCKINGBOARD's many talents. With
your assistance MOCKINGBOARD can change its voice. MOCKINGBOARD's voice is
described by four parameters: amplitude, inflection, filter frequency and speech rate.
These parameters have been preset to values which will appear in the lower half of the
Test Mode screen.

CURRENT PARAMETERS
11 -AMPLITUDE 232 -FILTER FREQUENCY
8 -INFLECTION 8 -SPEECH RATE

Should you wish to change any of these parameters, the commands below will allow you
to do so. The mark is defined as the control key (or CTRL).

 COMMAND RANGE COMMAND
 RANGE
^A AMPLITUDE 0-11 ^F FILTER FREQUENCY 0-253
^I INFLECTION 0-25 ^R SPEECH RATE 0-13

NOTE: If you typed a word or phrase to be spoken and have not cleared it with an N for
new entry, you will not be permitted to make any changes. The CURRENT
PARAMETERS display is replaced by an ENTER COMMAND: prompt which will only
accept R for repeat, N for new entry or Control-S for save the word. Type N for new
entry and you will be returned to an entry mode to make changes.

1-6
SOFT TO LOUD VOICE, ^A, AMPLITUDE
MOCKINGBOARD can speak in a variety of voices. It can speak in a barely audible
whisper, or for stage purposes, in a deep sonorous voice.
Volume or amplitude, may be adjusted with the ^A command. Type Control-A. The
program will respond with a prompt.

ENTER NEW AMPLITUDE SETTING

You may enter any setting from 0 to 11. The normal setting is set at 11. Try 4 and press
return. The new setting will be reflected in the CURRENT PARAMETERS Table.

CURRENT PARAMETERS
4 -AMPLITUDE 232 -FILTER FREQUENCY
8 -INFLECTION 8 -SPEECH RATE

Now type in "Hello." If MOCKINGBOARD spoke too softly, type N for new entry, and
A for amplitude. This time, try typing in 8, press return, and check for the new value in
the CURRENT PARAMETERS Table. Direct MOCKINGBOARD to speak again. When
you are satisfied that MOCKINGBOARD is speaking at a proper volume, you may turn
your attention elsewhere.

LOW TO HIGH VOICE, ^I, INFLECTION
Different roles or personalities require different voices. A child speaks in a high pitched
voice, an adult male in a low pitch. With your direction, MOCKINGBOARD can utilize
its talents and do impersonations.
Suppose that MOCKINGBOARD was asked to play an evil villain in a theatrical
production. Its normal voice won't do at all. In order to change pitch or inflection, type
Control-I in the Test Mode. A prompt will appear to assist you.

ENTER NEW INFLECTION SET NUMBER
You may enter any value from 0 to 25, When you change the inflection set, you are
moving the four main pitch levels up or down on a musical scale. An evil character
requires a very low voice, so let's type in 0, and press return. The new value will appear
in the CURRENT PARAMETERS Table. Now type "/WEL/COME TO MY DOMAIN,"
press return, and meet your villain.

1-7
MOCKINGBOARD's talents are far too great to play only evil character types. Let's
create another role. Type N for new entry, I for inflection and set the inflection set to 25.
Press return.
MOCKINGBOARD will now speak like a little child in a very high pitched voice. Type
"M/OMM/Y?" and press return. MOCKINGBOARD's versatility will amaze you.

SLOW TO FAST VOICE, ^R, SPEECH RATE
Some roles will require that MOCKINGBOARD speak very quickly. The speech rate
may be adjusted on a scale from 0 to 13, from excruciatingly slow to incredibly fast.
Type Control-R for the prompt:

ENTER NEW SPEECH RATE:

Set the speech rate to 1 and press return. Also, type ^I for inflection and change it back to
8. MOCKINGBOARD's new line is, "I am s/o/tired," and it is spoken as though
MOCKINGBOARD will be asleep before it reaches the word "tired." (Don't forget to
type the stress markers around the O.) On the other hand, type in a speech rate of 11, and

press return. Now type "Peter Piper picked a peck of pickled peppers," and press return.
MOCKINGBOARD never stutters.

ALTER THE VOICE QUALITY, ^F, FILTER FREQUENCY
The last parameter you may adjust is the Filter Frequency or voice quality. One of
MOCKINGBOARD's greatest virtues is its ability to change its voice, if you type
Control-F in the Test Mode, the prompt will read:

ENTER NEW FILTER FREQUENCY NUMBER:

By typing in any number from 0 to 253, and pressing return, you may direct
MOCKINGBOARD to speak in a different voice. Type in 242 and press return. Change
the speech rate back to 8. Type "TAKE ME TO YOUR LEADER." MOCKINGBOARD
could play a creature from outer space.

Let's try another. Type N and Control-F. Suppose we type 220 and press return.
MOCKINGBOARD's voice acquires a previously undiscovered dignity. If
MOCKINGBOARD now says, "YOU ARE A/GREAT/ DIRECTOR," we can believe it.

1-8
PULLING IT ALL TOGETHER
MOCKINGBOARD's abilities may be further explored by changing more than one
parameter at a time. Try changing Filter Frequency and Inflection together. Any
combination of the four parameters is possible, so you may create an unlimited number of
voices.
Let's go back to the evil villain and make his voice more convincing. What the voice
lacked earlier was the appropriate filter frequency.
Change the inflection to 0 and the filter frequency to 220, giving the speech a lower and
deeper voice quality. Also slow the speech rate to 6. Now, type "/WELCOME/ TO MY
DOMAIN. HA, HA, HA."
The child's whimper was high in pitch, but the voice quality was too strained. Change the
voice quality to produce a softer, more innocent cry. Type 20 for inflection, 240 for filter
frequency and 2 for speech rate. You may also lower the amplitude, if you wish. Type
"/MOMMY? /I/ LOVE YOU."

SAVE THE WORDS CREATED, ^S, SAVE
As you develop words or phrases using the above methods, you may wish to save them.
While the words and speech parameters are still on the screen, type CONTROL-S for
save. DO NOT TYPE N FOR NEW ENTRY BEFORE YOU TYPE CONTROL-S. This
will erase your words. Remember that after you enter a word, the only acceptable
commands are N for new entry, R for repeat and S for save. When you type S you will be
asked to enter a filename.

ENTER FILENANE:

You may enter any filename up to eight characters in length beginning with a letter A-Z.
The following message will appear while the new file is written to your disk.

PLEASE WAIT – SAVING COMPOSITE FILE

The words you save may be used for current or future programs you may wish to enhance
with speech. Please refer to the section on programming information for samples and an
explanation of how you incorporate speech into your work.

We have only whetted your appetite. With all the features presented in the previous
pages, you may create whatever creature or character your imagination dictates.
MOCKINGBOARD's talents are constrained only by your imagination.

1-9
THE RULE TABLE
Sweet Micro Systems' method of converting text to speech is rule based. Words are
broken into sound patterns, which are represented by rules. MOCKINGBOARD matches
these rules to characters in words or phrases. When a match is made,
MOCKINGBOARD speaks.

The quality of rules developed in each character table will determine the accuracy of the
resulting speech. Our language presents a formidable challenge in developing a
comprehensive rule table. The Sweet table should be considered a base rule table, which
may be personalized to suit your particular application. Sweet Micro Systems has made
an effort to free you from a predetermined vocabulary and pronunciation, by including a
utility called the Rule Editor. The Rule Editor will allow you to alter the Sweet table.
New rules may be added, existing rules may be edited or redefined, and nonessential
rules may be deleted from the tables. Personalize the Sweet table and let
MOCKINGBOARD tell you what you want to hear.

A WORD ABOUT PHONEMES
MOCKINGBOARD produces speech using a building block method of combining basic
sound units called phonemes. In order to teach MOCKINGBOARD to speak intelligibly,
we must train our ears to hear individual phonemes in our own speech.
MOCKINGBOARD can produce 64 speech sounds in all, more than enough to reproduce
any speech you care to hear.

Phonemes may be divided into two distinct categories, consonants and vowels. A list of
MOCKINGBOARD's phonemes, codes, and a key to their pronunciation are provided in
Appendix A, pages A- 1 and A-2. The chart is divided into two tables, one for vowels
and the other for consonants. The phonemes are listed in the first column of each table.

Each phoneme has four possible codes, which allow the user to select different durations
for each sound. By referring to the examples and experimenting with phoneme length,
anyone can produce highly intelligible speech.

Depending on where you live, your pronunciation of certain words may vary from
MOCKINGBOARD's pronunciation. You will find that some words pronounced by
MOCKINGBOARD will conflict with what you would normally expect to hear. Don't
hesitate to change the pronunciation of any word you wish. MOCKINGBOARD has a
great capacity to learn.

1-10
Boot the demo disk and select A for speech and then select Text to Speech, Type your
name following the question mark and press return. How did MOCKINGBOARD do? If
MOCKINGBOARD pronounced your name correctly great! If not, let's correct the rule
table so MOCKINGBOARD will always get it right.

Type QUIT to exit the Text to Speech mode and select the Rule Editor. The Rule Table
has been designed to generate correct pronunciation for a majority of words. It operates
using a text to speech method which allows the computer to analyze text, much in the
way a person talks. Should the computer not be informed about a particular rule for
pronunciation it will, like a human, make mistakes. Errors will occur because our
alphabet is not an accurate representation of our phonemic system. There is not a one-to-
one relationship between an alphabet letter and a particular phoneme. If you think back to
your grade school days, you will remember the difficulties first graders have with the
rules for silent e, the e which is not pronounced but signals a change in the preceding
vowel.

HOW TO MAKE CHANGES TO THE RULE TABLE
^Z, SELECT
When the Rule Editor is ready, you will see the following prompt at the top of the screen.

SELECT CHARACTER TABLE TO EDIT

The Rule Table consists of all alphabet letters, all digits and their upper case symbols,
and all punctuation marks. In order to demonstrate how to correct the Rule Table, we
have selected the name, "Robert," which we know is mispronounced. Type R for the R
character table, The R table will appear on the screen. It should look like Figure 1–1.

The first two lines tell you where you are in the rule table and the present status. The
number of rules (B), address (C), and bytes (D) will constantly change as you edit the
table.

Ten rules will appear on the screen at a time. If the character table contains more than ten
rules, press the space bar to advance to the next ten. When you reach the end of the table,
press the space bar to return to the first ten rules.

1-11

[A] RULE TABLE – R NUMBER OF RULES - 16 [B]
[C] ADDRESS – 34494 LENGTH - 160 BYTES [D]

1. !(R)! =OESC
2. !(READY)! = I D4A4A2501
3. !(READ) = ID414125

[E] 4. !(REC)+ = ID0130
5 !(REC) = ID0A29
6 !(RE)^ # = ID01
7 (RE)D = ID0A
8 (RHY)TH = 1D07
9 (RH) = ID
10 (RINE)! = I D0138

[F] ENTER COMMAND:

 Figure 1-1 Screen Display of a Character Rule Table

KEY TO THE RULE TABLE
[A] Indicates which character table you are viewing.
[B] Indicates the total number of rules contained in this table
[C] Indicates the starting address in memory where this table can be found
[D] Indicates the total length (in bytes) of this table
[E] The first ten rules
[F] Type one of the editor commands in Table 1-1

KEY FUNCTION KEY FUNCTION

^Z Select new character table U Update Main Rule Table
 E Edit an entry ^S Save Rule Table to disk
 I Insert a new rule ^L Load Rule Table
 D Delete an entry ^P Print Character Table
 T Test mode ^Q Quit or exit program
 ^X Help menu

SPACE Advance to next page of current Character Table

 Table 1-1 List of Rule Editor Commands

1-12

LET'S HEAR IT
The Rule Editor has a test mode which allows you to evaluate MOCKINGBOARD's
pronunciation.of a word or phrase. You will be able to access this mode from any
character table, and once in this mode, you may type any word or phrase.

T, TEST MODE
Type T for the Test Node and a screen similar to that of Figure I -2 will appear. The Test
Node will allow you to enter 239 characters or about six and a half lines of characters at
the question mark prompt. A beep will tell you that you have reached the limit. Type the
letter U until you hear a beep. Press return and listen to the results. The sequence of two
digit numbers at the lower half of the screen are the phoneme codes selected from the
rule table by the text to speech conversion program. When you typed the return, the U's
were converted to code using the rule(s) matching this character string.

TEXT TO SPEECH TEST MODE
?

CURRENT PARAMETERS
11 -AMPLITUDE 232 -FILTER FREQUENCY
8 -INFLECTION 8 -SPEECH RATE

 Figure 1-2 Test Mode Screen Display

KEY FUNCTION KEY FUNCTION

R Speak again ^A Set amplitude
N New entry ^L Set inflection
^S Save word or phrase ^F Set Alter frequency
^Z Return to Editor ^R Set speech rate level
 ^X Help menu

SPACE Advance to next phoneme page

 Table 1-2 Test Mode List of Commands

1-13
LOCATE THE SOURCE OF THE PROBLEM
Type N, to clear the input area for a new entry. Type Robert next to the question mark
prompt and press return. It sounds close, but not quite right. The sequence of two digit
number s at the bottom half of the screen represents the phoneme codes selected for
Robert. If you compare each of these phoneme codes with those of the Phoneme List in
Appendix A, page A-1 and 2, you will find that this name is pronounced as /ROWBFRT/
and not as /RAHBERT/, which is correct.

 ID 11 A3 64 SC 68 C0
 / R O W B ER T PAUSE /

In order to change the /OW/ sound to an /AH/ sound we must first determine which rule
caused the error. Let us return to the rule table. Type N to clear for a new entry. Type
Control-Z to return to the table from which you entered the Test Mode. Rather than go
directly to the O rule table, we must first search the R rule table. The rules in the R table
always define how the letter R will be pronounced, but the next character(s) in sequence
may also be included in the R rule. It is possible that a rule which exists for (RO) caused
the error.

HOW TO READ A RULE
Each rule in the table consists of three main parts, the rule definition on the left, the
equals sign, and the phoneme codes on the right. The first rule of the R table states that R
[1], which is preceded and also followed by a nonalphabetic character [2], is to be
pronounced [3] as the composite sound of /AH-ER/, which is equal to the code OE5C [4],

 [1]
 |
| !(R)!=OESC
 | / | \
 [2] [3] [4]

[I] Parentheses serve as boundary markers. They act to identify the particular character or
characters which are to be matched. In this rule, only R will be pronounced.

[2] The exclamation points indicate a nonalphabetic character which can be a space,
punctuation mark, digit, or any other symbol except those which have been reserved as
classification symbols (See Table 1-3).

1-14

[3] The equal sign acts to assign the phoneme code to the contents of the parentheses.

[4] If all the conditions on the left are met, then a match is achieved and the contents of
the parentheses will be pronounced as indicated by the phoneme code(s) to the right. The
codes are set aside in a buffer (a temporary memory location) until the entire word or
phrase has been converted.

Other symbols used in rules are given in Table 1-3a. The symbols help to generalize rules
to encompass as many words with the same pronunciation pattern as possible. For
example, a rule states that the letter A, preceded by any single consonant (^) and
followed by the letter T, is to be pronounced as a short A. This r ule may match the word
BAT, CAT, FAT, HAT, NAT, PAT, RAT, SAT, etc. It will also match BATTLE,
CATTLE, RATTLE, BATCH, CATCH, HATCH and so forth. This single rule will
insure that the letter A, in all these words and many more like them, will be pronounced
correctly.

How does the program know that B, C, F, etc. are consonants? The program is told. Each
letter in the alphabet is classified as shown in Table 1-3b. When Robert was typed, the
program converted it to these symbols and set it aside for reference.

 Symbols for VOWELS Symbols for CONSONANTS
one or more vowels ^ one consonant
+ vowels E I Y . consonants BDGJLNNRVWZ
 : zero or more consonants

 Symbol for CHARACTER Symbol for ALL OTHERS
 use the character ? nonalphabetic

 Table 1-3a Classification Symbols used in rule

A B C D E F G H I J K L M
. ^ . + ^ . ^ + . ^ . .

N O P Q R S T U V W X Y Z
 # ^ ^ . ^ ^ # . . ^ + .

 Table 1-3b Classification Symbols: used in conversion

1-15

Rule number I does not apply to Robert, because the O in Robert fails to match the
exclamation point on the right of R.

 / ROBERT /
 | | |
 ! R !

If we had typed in "R" alone, a match would have been achieved. The text to speech
program automatically inserts a space on either side of a word or phrase to be converted,
to mark where it begins and ends. Therefore, the exclamation point on the left matches
the space which precedes the name, Robert. A match is not achieved on the right, because
the letter O is a vowel, not a nonalphabetic character.

Compare the name, Robert, to the remaining rules in the R table. Each letter could be
represented by its own character or a general symbol defining a vowel or a consonant.
The letters in the name, Robert, may be represented by these symbols:

R O B E R T
. # . + . ^
^ ^ # ^

Upon examination, we will see that a match will not occur until the last rule: (R) = I D.

The last rule states that R in any environment, excluding the rules preceding it, will be
pronounced as the R in the word, "rat." Rule number 16 only defines the pronunciation
for the letter R, and not the sound of the letter O. Therefore, we must look to the next
letter in sequence, the letter O, to locate the source of the mispronunciation.

1-16
We now proceed to the O table, type Control-Z to select a new character table and then
O. If you page through the O table looking for a match, you should find a page of rules
similar to Figure 1-3.

RULE TABLE – O NUMBER OF RULES - 88
ADDRESS – 34420 LENGTH - 849 BYTES

61 (O)^AGE=0E
62 (O)^A = 1163
63 (O)^E = 11A3
64 (O)^I# = 1163
65 (O)^ICE = 51A3
66 (O)^L# = 11

67 (O)^U = 11
68 (O)^U = l 1
69 (O)^Y = 1 l
70 (OUGHT) = 1028

ENTER COMMAND :
 Figure 1-3 The O Rule Table

A quick glance over the table indicates that all of these rules, with the exception of
number 70, define a sequence of letters in which O must be followed by one consonant.
To the left of O no symbol or character exists. This means that the rule is not affected by
what precedes O and this position is left unconstrained.

So far any rule from 6 I to 69 could match Robert. Since it does not matter what precedes
O and it is the only character within parentheses, we check for a consonant to the right
and find B. To the right of B is the vowel E. Search the rules, starting with 61, for "E, ^+
or ^#. Rules 61 and 62 can be eliminated since A follows . Rule 63 matches the E. Since
the rule boundary ends here, a match is made.

 / ROBERT /
 | | |
 O^E

This rule states that whenever an O is followed by any single consonant and the letter E,
the O will be spoken as the O in "boat." If we try to change this particular rule so that
Robert is pronounced correctly, we will find that this change affects other words, such as
ROBE, ROPE, VOTE, and HOTEL. In order to avoid the possibility of such a side effect,
let us create a rule just for Robert, since it appears to be an exception to this rule.

1-17
CREATE A NEW RULE
In order to create a rule we first have to decide where to place it. the placement of a rule
is very important, not only within a character table, but also among the rule tables.
Always place your rule in the table represented by the first character to be pronounced
(within the parentheses). Since the purpose of creating the rule is to insure that the name
Robert will be pronounced correctly, we will enclose all the letters within the
parentheses. This rule will be placed in the R Table.

 I, INSERT

Type Control-Z (^Z) to select a new character table. Type R and the R rule table will
appear on the screen.

First, we must determine where this new rule should be inserted. The program will search
through the tables sequentially in its conversion process, so it is important that all
exceptions be listed before the general case. Otherwise, the search may end prematurely
with a rule for a more general case. We could not, for example, place Robert at the end of
the table after

(R) = ID.

If we tried to do so, our search would end with the above rule. This is a default rule
which will match any word with an R since it does not specify what is to the left or right
of R, the program would proceed to the next character search without ever reaching our
Robert rule.

In the event that you are working with a table of many exceptions, it is wise to
alphabetize the exceptions without violating the exception to general case order. In this
manner it is easier to locate and examine a particular rule.

Since only the name Robert will match the rule we wish to create, it may be placed
anywhere as long as it is before the last rule. For this example, let's place it in
alphabetical order. Search through the table and find:

14 (RI)V = ID07
15 TH(ROUGH) = ID16

The Robert rule could be placed between these two rules. (Note: this is an example.
These rules may not appear in this manner or consecutively.) Now

1-18
that we know where we would like to place the rule, let's write it. Type I for Insert. You
will be prompted with the instruction.

ENTER RULE TO INSERT AT PROMPT BELOW

Type the first part of the rule as it appears below next to the > prompt. DO NOT PRESS
RETURN! If you did press return, just press return again to display the Enter Command
prompt, and begin once more by typing I for Insert.

 >!(ROBERT)!

If while entering the rule, you make a typographical error, you may back space using the
left arrow key and correct the error. However, if you type past the equal sign, you will
not be permitted to back past it. If this happens, press the return. Press it again in
response to the next prompt in order to cancel your entry. No rule will be inserted until
you type in the location to insert. Now type the equal sign, DO NOT PRESS RETURN!

The exclamation points in this rule represent spaces. In this way we may exclude the
possibility of altering the pronunciation of the same sequence of letters which may
happen to be contained in a larger word. If, for example, we write a rule for the name,
ROB, and leave both sides of the word unspecified, it would affect the pronunciation of
words such as stROBe. To avoid this, we may define a space to the left and right
!(ROB)!, so that only these three letters would match this rule. Even ROBert would not
match, since there are more letters to the right.

Refer to the phoneme list on page A-1 and A-2 and look for the phoneme code for an
/AH/ sound to pronounce Robert correctly. A portion of that table has been reproduced
below. Sometimes there may be more than one possibility. The list of phonemes contains
two /AH/ sounds, specified by the phoneme codes beginning with OE and OF.

 PHONEME LIST (PORTION)
PHONEME CODE EXAMPLES
 1 2 3 4
AE 0C 4C 8C CC dad
AE1 0D 4D 8D CD laugh
AH 0E 4E 8E CE top, about
AH1 0F 4F 8F CF father
AW l 0 50 90 D0 saw, caught

1-19
Notice, that for each sound in the phoneme list, there are four possible phoneme codes.
As the value is changed from that of column 1 to columns 2, 3, or 4, the duration of the
sound is shortened by approximately twenty-five percent, You may select the length
which sounds best to you. If you wish to lengthen a sound, place two phoneme codes for
the same sound together.

Try the /AH1/ sound from the first column. Type the codes as indicated below, replacing
only 11 and A3 with 0F for the 0 sound. The rule to be inserted should appear as follows:

 >!(ROBERT)! = ID0F645C68C0

All phoneme codes are comprised of two digits. Leading zeros are necessary. Should you
make an error, you will be allowed to back space over the phoneme code. The back space
works a little differently with phoneme codes. A single back space will move back and
erase two digits rather than just one. This will prevent you from entering odd numbers of
phoneme code digits. Please note that you will only be permitted numbers and the letters
A-F on the right side of the equal sign. Now press return, if you have not already done so.

The program will ask you where you would like to insert the rule:

ENTER BEFORE RULE NUMBER:

Insert the Robert rule before rule 15, TH(ROUGH) = ID16. This new rule will now be
part of the table. The Editor will return to the first page of the table after inserting the
rule. Press the space bar and find the new rule 15.

MAKE CORRECTIONS
Now, let's hear it. Type T for the Test Mode. Type Robert after the question mark prompt
and press return. How does it sound? It sounds much better, but let's try the other /AH/
sound, OE. Type N for New Entry and ^Z to return to the R table.

E, EDIT
To make changes to a rule, type E for edit. You will be prompted with the following:

ENTER NUMBER OF RULE TO EDIT:

Type in the number of the rule, 15. Press return, The Robert rule will now appear at the
bottom of the screen above a prompt, so that you may refer

1-20
to it during the edit. The entire rule MUST be reentered, not just the corrections. Partially
typed rules will replace the original rule, in the manner typed. The rule number is not
necessary. As was the case for the Insert command, any typographical errors must be
corrected before the equal sign is typed. You will not be permitted to back space beyond
the equal sign. If you type the equal sign, complete the rule, press return and type E to
begin again. The rule should be completed so that you will not have to reconstruct the
entire rule from your memory.

Typographical errors on the right hand side of the equal sign may also be corrected using
the back space. Remember that in order to preserve the two digit code for a phoneme, a
single back space will move back two digits, not one, and that you will only be allowed
to type number s and the letters A-F. Retype the rule with 0E, in place of 0F.

 = !(ROBERT)! = ID0E645C68C0

Press return and the edited rule will replace the old one. The display will show the first
ten rules. Press the space bar and make sure the rule was edited properly, Test it once
more. It should sound better and more intelligible. Once you are satisfied that this new
rule functions correctly, type U to Update the table.

SAVE THE CHANGES
U, UPDATE

When you select a character table, this one table is copied into a "buffer" area. A buffer
area is like a temporary work space or scratch pad. You may make additions, deletions
and changes to the rules while they are in this area. Once you are satisfied that the
character table is correct, the Update command replaces the old table with the new table.
Eventually, all the character tables will be saved permanently to disk.

The buffer area can only hold one character table at a time. if you select another character
table, the current table in the buffer will be written over by the new table. Any changes
made will be lost unless an update was performed. Therefore, if you would like to see
another character table, and you are not sure if you updated the current table, type U to
update. No harm will be done if you did update earlier or made no changes.

1-21
S, SAVE
Once your work is updated, type Control-S to save the new table on your disk. The
following prompt will appear at the bottom of the screen:

ENTER FILE NAME:

You have an option to save the corrections in the rule table you are currently working
with or save them under another name and create a new rule table. If you would like to
create a new table, enter any file name up to eight characters in length, beginning with a
letter from A-Z and press return. If you want to save the corrections in the current rule
table, type Control-N. No file name is necessary. The standard rule table, provided on the
demonstration disk, is called MKB:RULE. After entering the name or N, the Rule Editor
will respond with:

PLEASE WAIT – SAVING RULE TABLE FILES

DELETE A RULE
If you find that you have no use for a Robert rule, you may delete it. Any rule in any
table may be deleted with the exception of the last rule. Each table must have at least one
rule.

D, DELETE
Assuming that you are still in the R table, type D for Delete at the ENTER COMMAND
prompt. The program will respond with:
ENTER NUMBER OF RULE TO DELETE:
Type 15 and press return. The screen will display the following prompt along with the
rule you selected. The rule will appear near the bottom of the screen.

CONTINUE WITH DELETION? (Y/N)

Every attempt has been made to avoid mishaps, so you must confirm your intentions. if
you respond Y, the deletion will proceed and all the rules following this rule will move
up one position. The display will revert back to rules 1-10. Scroll through with the space
bar to make sure the correct rule was deleted. Also check the last rule number to confirm
the new rule count at the top of the screen display.
If you do not want to delete this rule, respond N, and the ENTER COMMAND prompt
will reappear.

1-22
OTHER USEFUL COMNANDS

L, LOAD
After you become more familiar with the Rule Editor, you may discover more interesting
applications for the text to speech capabilities. For example, you may be interested in
foreign languages and might like MOCKINGBOARD to speak, maybe German? Or
perhaps, you are writing a program which could use some speech. The standard rule table
may be too bulky to be used with your program. The solution is to create a new rule table
for your application. You don't have to give this one up to get another. The demonstration
disk contains a semi-blank rule table called MKB:EMPT. It contains the required one
rule in each character table. If you do not wish to start from scratch, you may use the
standard rule table (NKB:RULE), edit it and save it under another file name. This is done
with the S, Save command.

You may select a new rule table from any rule table. When you select the Rule Editor
from the main menu, the standard rule table (MKB:RULE) will automatically be loaded.
Select any character table and type Control-L (^L) at the ENTER COMMAND prompt.

ENTER TABLE NAME

Type the name of the rule table you wish to access. When a rule table is saved, three files
are saved, the table itself, the total length of the table, and an index used to locate the
character tables within the rule table. When a rule table is saved, .TABLE, .LENGTH,
and .INDEX are appended to the file name automatically. The load command will

automatically load the appropriate files, including the suffix. Therefore, when you load a
table, you need only type its name.

PLEASE WAIT – LOADING RULE TABLE FILES

This prompt will appear, then the screen will clear and the initial select prompt will
appear. You are all set to begin working with your new table.

SELECT CHARACTER TABLE TO EDIT

1-22
P, PRINT
The Rule Editor provides a simple to use print command to print out the individual
character rule tables.
Turn on your printer and type Control P. The following message will appear at the same
time your printer begins to print.

PLEASE WAIT – PRINTING CHARACTER TABLE

The print out will look similar to the screen display, except that all the rules will be
printed out in succession. When it is completed, the ENTER COMMAND prompt will
reappear.
X, HELP
Control-X (^X) will display all the commands for the Rule Editor. It will also display the
commands for the Test Mode when you are in that mode.
Q, QUIT
When you are finished with the Rule Editor and wish to exit the program, type Z to select
a new character rule table and type Control-Q (^Q).

ONE FINAL INSTRUCTION
It is important to note that your idea of the correct pronunciation may not be that of your
neighbors. Some will prefer to say tomahto, others tomato. The Rule Editor allows you to
change rules to suit your listening pleasure. It's yours! Go ahead and make
MOCKINGBOARD say your own name.

2-1
SOUND

The MOCKINGBOARD sound system generates a remarkable array of sound effects and
music. It is a natural addition to any program because it introduces real-life action and
excitement to silent images and text. It fills time or sets moods with background music,
and captivates the youngest of users with familiar and recognizable sounds.

In a very short time, MOCKINGBOARD will be making interesting sound effects under
your control. As a method of introducing each of the sound controls used to generate
effects, we will create two different types of sound effects using the SOUND UTILITY
program included on the demonstration disk. This step by step explanation will be
followed by examples showing how to incorporate sound effects into BASIC programs.
The programs are well documented with comments called REM (remark) statements to
help you understand the purpose of each line, Just type in the code as written.

A FEW WORDS ABOUT THE SOUND UTILITY
The Sound Utility program, provided on the demonstration disk, will allow you to create
sound effects without programming. In fact, all the sound effects on the demonstration
disk were first developed with the utility, then saved and incorporated into the programs
later.

Please boot the demonstration disk and select Sound Utility. The monitor or TV screen
will look similar to Figure 2-1. SPEAKER: 1, at the top left hand corner, refers to the
speaker which is the source of the sound. Below this line are the parameters which
generate the sound.

At the bottom of the screen is a menu of commands. The cursor can be moved to different
parameters using the arrow keys and/or Control-J for down and Control-K for up.
Additional information about this utility will be presented as needed.

2-2
SPEAKER: 1
REGISTER MAX CHANNEL
NAME VAL ALL A B C

TONE PER FINE 255 0 0 0 0
ONE PER COARSE 15 0 0 0 0
NOISE PERIOD 31 0
ENABLE 63 0
AMPLITUDE 16 0 0 0 0
(FIX = 0- 15/VAR = 16)
ENVL PER FINE 255 0
ENVL PER COARSE 255 0
ENVL SHAPE 15 0

P = PLAY B = SIMULTANEOUS L = LOAD X= CLEAR
R=RESET C=SPEAKER S =SAVE Z=END

 Figure 2-1 Sound Utility Screen Display

WHAT YOU NEED TO KNOW ABOUT SOUND
Sound is a common phenomenon which we hear and feel every day, yet most of us have
not given it much thought. What distinguishes one sound from another? How can a sound
be duplicated? With MOCKINGBOARD, differentiating sounds is a natural process of
developing them. Some sounds evolve into familiar, common sounds. Others become
beautiful, exotic or mysterious. This process of developing MOCKINGBOARD sounds
is comparable to adjusting your television set to get a clear picture. But instead of turning
control knobs, you type in control adjustments to tune your sound.

2-3
MOCKINGBOARD "KNOBS"

Sound Quality On/Off Switch Volume Pattern
Tone Period Enable Amplitude Envelope Period
Noise Period Envelope Shape

TONE PERIOD/NOISE PERIOD: Sound quality may be pure tone sounds, like musical
notes, or noise, like rushing air. The Tone Period adjustment ranges from high to low
pitch. The Noise Period adjustment also ranges from high to low, but not in terms of
pitch. A high Noise Period sounds like the hissing of steam, while the low period sounds
like the roar of rockets.

ENABLE: Turns on or off the tone or noise generating capability. This is important,
because MOCKINGBOARD is capable of producing up to six different sounds.

AMPLITUDE: Controls the amplification or volume of the sound. There are two
amplitude modes, fixed and variable. Fixed level amplitude provides 16 different levels
of constant volume. Variable level amplitude passes the amplitude control to Envelope
Period and Envelope Shape which generate amplitude patterns.

ENVELOPE PERIOD/ENVELOPE SHAPE: Most sounds have a recognizable pattern
which repeats, The pattern you hear is the change in volume. A sound may become loud,
holds its level and then fade or soften. Envelope Period adjusts the length of one pattern

by expanding or contracting it. With Envelope Shape you may select from 8 different
shapes or patterns.

GETTING ACQUAINTED
The Sound Utility program is capable of loading and saving sounds you develop. The
sounds found on the demonstration disk were created using this program. To get
acquainted with both the Sound Utility and the sound parameters, let's load a few existing
sounds and play them. Each sound effect may be identified as either a pure tone, pure
noise or a combination of the two.

2-4
Type L for load. The following will appear in the area just above the commands:

ENTER SOUND NAME OR <C>ATALOG = >

Let's listen to a pure tone sound, Type PING. The parameters for this sound effect are
loaded into their respective fields or locations on the screen for evaluation and
modification, The screen appears as follows:

SPEAKER: 1
REGISTER MAX CHANNEL
NAME VAL ALL A B C
TONE PER FINE 255 0 20 0 0
TONE PER COARSE 15 0 0 0 0
NOISE PERIOD 31 0
ENABLE 63 62
AMPLITUDE 16 0 16 0 0
(FIX = 0-15/VAR = 16)
ENVL PER FINE 255 0
ENVL PER COARSE 255 4
ENVL SHAPE 15 0

Type P for Play and listen to the sound. As its name suggests, it is a "ping" sound. This
one, quick, pure tone sound may be adjusted for a longer duration. Move the cursor down
to ENVL PER COARSE, using the down arrow key or Control-J and type 8. Type P for
play and listen to the change. Try a few more changes to this value, type 20, type 2, etc.
Notice that the larger the value typed, the more drawn out the ping is. Conversely, if a
smaller number is entered, the ping becomes a plunk; not only is it shorter in duration,
but one might suspect that it is a different sound altogether. The difference between the
sounds is relatively minor. It is characterized by a change in the rate of decay or gradual
decrease in volume. The difference between the decays of ping and plunk is similar to the
difference between rolling a ball down an incline and pushing the ball off the back, which

is a cliff-like drop. The ball rolling down the incline takes longer to reach the ground than
the ball dropping off the back.

2-5
Let's find out what fixed level amplitude sounds like. Change the ENVL PER value back
to 4 before proceeding. Move the cursor up to AMPLITUDE. Using the right arrow key,
move it to column A and type 10. Play the sound. Type R to stop the sound or type 0 to
turn off the volume. This time the sound was piercing. The pitch was high and irritating.
Move the cursor to Tone Period Fine tune to lower this pitch. Move the cursor to the A
column and type 244. This value is a C note in the fourth octave (middle C). A chart of
TONE PER values for each note is provided in Appendix E, page A-6.
Our ping sound can also be altered by changing the amplitude pattern or the ENVL
SHAPE. We have already adjusted the length of a decaying sound, but a sound which
decays is only one of 8 possible patterns from which you may choose. The diagram
below illustrates the different patterns we may select. Try each one to establish a
relationship, in your mind, between the sound pattern and its picture.

VALUE
(DEC) GRAPHIC REPRESENTATION

8 \|\|\|\|\|\|\|\|\|\|\|\|\|\|\

9 ____________

10 \/\/\/\/\/\/\/\/\/\/\/\/\/\

11 \|

12 /|/|/|/|/|/|/|/|/|/|/|/|/|/|/|

13 /

14 /\/\/\/\/\/\/\/\/\/\/\/\/\

15 /|____________

Let's load a noise sound and play with it. Type L for Load, and type EXPLOSION. Type
P to play. The ping sound is gone. We now hear a powerful blast. What parameters are
required to make an explosion?

Move the cursor down to ENVL SHAPE. Notice the ENVL SHAPE is set to 0. Do not
take 0 to mean that this parameter has been shut off! There is a sound pattern associated
with a value of zero. This pattern is not included in the diagram above because it is the
same pattern as for a value of 9.
Change ENVL SHAPE to 14, and listen to your new sound. You are hearing the ocean,
and all we had to do was change one parameter!

2-6
Move the cursor up to ENVL PER COARSE and type 10. Type P to play and listen to the
difference. The ocean roar changed to a swish. Continue to reduce the value until you
reach 1. This is a train sound. By changing only two parameters, we have created a wide
range of special effects: explosions, ocean roars, swishes and trains.

Finally, let's listen to a sound which has both tone and noise. Type L for load and type
ENGINE. The screen will display:

SPEAKER 1
REGISTER MAX CHANNEL
NAME VAL ALL A B C
TONE PER FINE 255 0 0 0 0
TONE PER COARSE 15 0 5 5 5
NOISE PERIOD 31 10
ENABLE 63 0
AMPLITUDE 16 0 10 10 10
(FIX=0-15/VAR=16)
ENVL PER FINE 255 0
ENVL PER COARSE 255 0
ENVL SHAPE 15 0

Type P to play the engine sound. Tones are set at a coarse tune of 5 and noise is set at 10.
The fixed amplitude is set to a moderate level of 10.
MOCKINGBOARD is capable of generating six different sounds at once. The three
channels on each chip permit various combinations of tone and noise to be generated
separately. The ENABLE parameter will allow you to designate whether a tone, noise, or
a mixture of both is to be produced through each channel. A chart in Appendix C, page
A-4 contains values for the different possible combinations of sound. You may also find
the proper ENABLE value in the Sound Utility by typing Control-E. Enable is currently
set at 0, let's find out what a zero setting means. Type Control-E, type 0 and type a return.
A prompt will appear on the screen

ENTER 40 TO 63 OR 'S' TO SCROLL = >

The chart just above this prompt tells you that all three channels are open for both tone
and noise. If you type 63, all the channels are turned off. No

2-7
sound will be generated. Press the ESCape key and the cursor will return to where you
typed Control-E. Type 63 and P for play. MOCKINGBOARD is silent.

To hear just the tone component of the engine, type 56 for ENABLE. Verify that this
umber is for tone only in all three channels. Type Control-E again and enter 56. Press
ESCape to return to ENABLE. Type P to play and listen to the result. The sound is a low
pitched buzz.

Now type 7 for ENABLE and press P to play noise only in all three channels.
MOCKINGBOARD is producing a sound like television static. MOCKINGBOARD will
allow you to mix these sounds just like an audio engineer. You make make either tone or
noise dominant by restricting the other to one channel only. for example, type 28 for
ENABLE. The tone sound is now generated in channels A and B, while noise is restricted
to channel C. Experiment with other possible combinations, and listen to the difference.

Further discussion and detail is given in the next two sections on developing noise only
sound effects and tone only sound effects (musical notes).

NOISE ONLY SOUND EFFECTS
You will have an opportunity to hear the difference between tone and noise, and the
effects that can be created with them. We will begin with a noise effect – the sound of a
train.

Using the Sound Utility, move the cursor to NOISE PERIOD. The Noise Period value
ranges from 0 to 31 . The value represents the amount of noise compressed within a
period of time. The larger the value, the less noise compressed. The smaller the value, the
more noise compressed. The result is similar to the sound of steam escaping from a
kettle. The steam makes a high frequency hissing sound because the steam is trapped and
is being compressed. If the lid is opened, the hiss immediately becomes lower in
frequency because the steam is not being compressed.

The sound of a train is a soothing sound which is neither a high nor low frequency sound.
Let's try a middle value. Type 16 next to NOISE PERIOD.

2-8
TURN ON NOISE ONLY
Sounds produced by MOCKINGBOARD are routed through a passage, called a channel,
to the speaker. Each sound chip on MOCKINGBOARD has three such channels for
generating three seperate sounds. MOCKINGROARD orchestrates the three sounds and
sends them out to a speaker. Since MOCKINGBOARD has two sound chips, it is capable
of producing six different sounds, simultaneously, through two speakers.
Each channel may produce tone only, noise only or both. A single value entered for
ENABLE will set each of the channels according to its representation. A chart in
Appendix C, page A-4, provides the values associated with all the possible combinations
for three channels. We will work with three of the six channels to generate a train sound
and designate each for noise only.

The Sound Utility also provides this information if you request it. Move the cursor to
ENABLE. Type control-E and the following will appear in the open box area near the
bottom of the screen:

ENABLE NOISE TONE
VALUE C B A C B A
ENTER #0 TO 63 OR 'S' TO SCROLL = >

Type S and the following will appear:

ENABLE NOISE TONE
VALUE C B A C B A
0 ON ON ON ON ON ON
PRESS SPACE TO CONT/ESC TO RETURN

Press the space bar once and the A channel for TONE will change to OFF. Continue to
press the space bar until all TONE channels are turned OFF and all NOISE channels are
ON The corresponding ENABLE VALUE is 7. Type ESC and the cursor will return to
ENABLE at the top half of the screen or to where you typed Control-E. Now type 7.

2-9
SETTING AMPLITUDE
Move the cursor to AMPLITUDE. In order to hear the train sound, volume (or loudness)
must be added. Amplitude levels can be set by either of two methods, a fixed level
amplitude and variable level amplitude. With fixed level amplitude, a specific level of
volume is selected and held constant until it is shut off or changed. This is similar to the
volume control on a television set. You can adjust the volume to a comfortable listening
level and then listen to that level for the rest of the evening. If you wish to change it, you

must get up to adjust it. The fixed level is selected by setting AMPLITUDE to a level
within a range of 0 to 15.

Variable level amplitude is more dynamic. That is, the loudness is not constant and may
be altered at any time. Natural sounds are dynamic; each has recognizable characteristics.
A bird's chirp cannot be mistaken for a dog's bark nor the patter of rain on a window. The
chug of a train is also distinguishable from the whirl of the helicopter or the blast of a
gunshot. It is a steady sound but not constant.

The train sound is characterized by a variable amplitude. The variable level is selected by
setting AMPLITUDE to 16. Type 16 in the ALL column and all three channels will be
set to 16. When the cursor is moved away from AMPLITUDE the value in the ALL
column will revert to zero.

WHAT MAKES A TRAIN SOUND NOT A GUNSHOT?
Change in amplitude distinguishes one sound from another. Amplitude may vary in any
of three ways or modes, It can get louder (attack), it can hold at a particular level of
loudness (sustain) and it can get softer (decay), Attack, sustain and decay are terms used
to describe the amount of energy a sound gains or loses. For example, if you blow up a
balloon and release it, the sound is very loud just as it is released. Almost immediately it
begins to fade as the air escapes.

The amplitude pattern of the train sound (chug, chug) evenly increases and then
decreases in volume; there is the same amount of attack as there is decay. If we were to
draw a picture of this amplitude pattern, it would look like a zigzag. In contrast, a gun
shot sound does not repeat itself. It is one quick blast. It starts out very loud, and then
fades (decays). Conveniently, we do not have to create these patterns from scratch.
MOCKINGBOARD can generate several common amplitude patterns.

These patterns, called Envelope Shapes or ENVL SHAPE, range from 0 to 15, but the
actual number of different patterns is 8. These eight different

2-10
patterns are illustrated in Table 2-1 and also in Appendix D on page A-5. Shapes 0-7
generate only one cycle of any sound. Although they are usable, they may be
uninteresting. Concentrate on shapes 8-15.

VALUE
(DEC) GRAPHIC REPRESENTATION

8 \|\|\|\|\|\|\|\|\|\|\|\|\|\|\

9 ____________

10 \/\/\/\/\/\/\/\/\/\/\/\/\/\

11 \|

12 /|/|/|/|/|/|/|/|/|/|/|/|/|/|/|

13 /

14 /\/\/\/\/\/\/\/\/\/\/\/\/\

15 /|____________

 Table 2-1 Envelope Shape Patterns

Shape 14 describes the zigzag patter n of a train sound; it starts soft, gets loud, then soft
and continues until it is changed or shut off. Set ENVL SHAPE to 14.

HOW FAST IS THE TRAIN GOING?
The envelope establishes the basic amplitude pattern of a sound, but it is the duration of
one cycle of the pattern which generates the effects. A train may be speeding along or
slowing down. If the zigzag pattern of the train is compressed it will simulate a speeding
train. A very loose zigzag will create the impression of a train moving slowly. The
duration of a cycle is called an Envelope Period. Move the cursor to ENVL PER
COARSE. ENVL PER COARSE stands for Envelope Period Coarse Tune. The envelope
period range is from 0 to 65,535; this is broken down into fine tune (0-255) and coarse
tune (0-255). Fine and coarse tuning may be thought of in terms of minutes and seconds.
It takes 60 seconds to equal one minute. Similarly, a value of 256 for fine tune equals one
unit of coarse tune. The coarse tune will determine general duration of one cycle of a
particular envelope and the fine tune will define the exact duration.

2-11
The envelope period of a speeding train is short, so set the ENVL PER COARSE to 1.
Let's listen to it. Type P for play. Stop it by typing R for reset. Now, type P again, but this
time do not type R. Experiment by typing in different values for ENVL PER COARSE
and ENVL PER FINE to change the train's speed. Type P each time you wish to hear the
result.

CHANGE A TRAIN INTO A HELICOPTER

Move the cursor to ENVL SHAPE and change the pattern to I 2. TYPE P to play. Listen,
it sounds like a helicopter. A helicopter sound does not have a zigzag amplitude pattern.
As the blade of the helicopter whips around, the sound builds from soft to loud and
quickly drops back to soft. This sound pattern is an example of attack, there is no decay;
the pattern resembles the outline of a sawtooth. If you wish to slow the helicopter down,
increase the ENVL PER COARSE

CHANGE A HELICOPTER INTO A GUNSHOT
Type 0 for ENVL SHAPE and move the cursor to ENVL PER COARSE. Type P. It
sounds like something dropped. Type 10 and type P. It sounds like a gunshot. A gunshot
is a single burst of sound which does not repeat. It does not appear to use the ENVL
SHAPE, only the ENVL PER COARSE. But in fact, the envelope shape, when set to 0, is
an example of a decaying sound; it starts loud and fades in one cycle. Shape pattern 0 is a
duplicate of shape 9. The ENVL SHAPE and ENVL PER COARSE and FINE are turned
off only by a fixed AMPLITUDE setting of 0 to I 5. Try it.
Most of the sounds heard on this disk can be loaded using the Sound Utility. Type L for
load and type the name of the sound or C for catalog to see the list. Each sound parameter
will be displayed and can be changed. If you develop a sound you would like to save,
type S for save and type a descriptive name. Do not use the same name used to load the
sound, save it under another name. If you save it under the same name, you will lose the
original sound and replace it with your new sound.

TONE ONLY SOUND EFFECTS
MOCKINGBOARD has a six channel sound capability and wide frequency range. Its full
eight octave range makes it an ideal instrument for music com- position. Two three note
chords can be played at the same time, allowing you to compose songs with full
accompaniment.

2-12
Our train sound was made up of noise only. It was generated by setting the Noise Period
to some value from 0 to 31. In contrast, musical notes consist of pure tone sounds. They
are generated by setting the Tone Period. The Tone Period value ranges from 0 to 255 for
fine tune and from 0 to 15 for coarse tune.

Tone Period values represent the amount of compression or expansion of pure tone sound
within a period of time. The smaller the Tone Period value the more compressed the
sound; and therefore, the higher the pitch. Conversely, if the value is larger, the tone
sound is expanded and the pitch is lower.

Fine and coarse tune are MOCKINGBOARD's tuning pegs. It is important to be able to
obtain the frequency or the particular note desired, because sour notes are easily
identified. In order to adjust the pitch on your MOCKINGBOARD, use the coarse tune to

get the general frequency range and the fine tune to get the desired pitch. The relationship
behind the fine and coarse tune is like the example given for Envelope Period. Coarse
tune represents minutes of accuracy, fine tune allows us to deter mine the seconds. A fine
tune of 256 is equal to 1 coarse tune.

A chart of the TONE PER values for each note is provided in Appendix E on page A-6.
The fourth octave of this chart has been reproduced in Table 2-2 so you can easily select
a few notes to play. Let's begin with the C-note. The decimal equivalent is 244.

 TONE PERIOD
 NOTE (DEC)
NOTE OCTV FREQ CRSE FINE
C 4 261.624 0 244
C# 4 277.184 0 230
D 4 293.664 0 217
D# 4 311.128 0 205
E 4 329.624 0 193
F 4 349.232 0 183
F# 4 369.992 0 172
G 4 391.992 0 163
G# 4 415.304 0 153
A 4 440.000 0 145
A# 4 466.160 0 137
B 4 493.880 0 129

 Table 2-2 Equal Tempered Chromatic Scale: Fourth Octave

2-13
START FRESH WITH A CLEAN SCREEN
The screen is still set for a noise sound and must be cleared before we begin making tone
sounds. Type X for clear and respond Y, for yes, to the prompt appearing in the box at
the lower half of the screen. All the values previously set have been returned to zero.
Move the cursor up to TONE PER FINE by typing Control-K (or the up arrow key).
Move the cursor over to the right once to channel A, by typing the right arrow key. Type
244.

TURN ON TONE ONLY
Move the cursor to ENABLE and type Control-E. The box in the lower half of the screen
will prompt you to enter either a number or S for scroll. Type S to scroll and press the
space bar until only channel A for tone is ON; all other channels should be OFF. The
Enable value is 62. Type ESC and the cursor will return to ENABLE. Type 62 to enable
channel A for tone only.

SET THE AMPLITUDE
AMPLITUDE or volume of a sound may be set in two ways. The first way is to generate
a fixed level amplitude, which produces a sound with a constant volume. The sound will
remain at the same level until it is changed or shut off by an R for reset (stop). Fixed
level settings range from 0 for no volume to 15 for maximum volume.

Move the cursor to AMPLITUDE and press the right arrow key to move the cursor to
channel A. Set the AMPLITUDE to fixed mode by typing 15. Type P to play and listen.
Type R for reset to stop the sound. The sound is a tone or a musical note but the constant
flow of the sound is annoying. Let's try to set the AMPLITUDE in another fashion.

CREATE MUSICAL NOTES
Variable level amplitude is controlled by a preset pattern of loud and soft levels. Variable
level is selected by setting AMPLITUDE to I 6. Under variable level amplitude, control
is passed to the envelope shape and period controls. The changes in amplitude which
distinguish one sound from another are called the envelope. This amplitude pattern
describes the shape of the envelope (ENVL SHAPE). Appendix D on page A-5 shows the
8 different patter ns available on MOCKINGBOARD.

2-14
The duration or envelope period (ENVL PER) of each pattern may also be controlled to
create different effects. For example, a zigzag pattern, one which evenly glides up to loud
and glides down to soft, may be compressed tightly so that the result is a tense and
pulsating sound. The same zigzag pattern may be expanded. The sound is now calm and
rolling.

PLAY A NOTE
You may make the sound stop automatically, by setting AMPLITUDE to variable level
and the ENVL SHAPE to a one cycle pattern. The pattern should start loud and glide
down (decay) until no sound can be heard (pattern 0 or 9). The rate at which the note
decays may be determined by the ENVL PER value. This capacity to control a note's rate
of decay allows you to define the note as whole, half, quarter, eighth, etc.

Set AMPLITUDE for channel A to variable by typing 16. The ENVL SHAPE should be
set to a decay pattern since musical notes naturally decay after an initial burst. A strike of
a piano key or a pluck of a guitar string starts loud and fades as the vibration subsides.
You may leave ENVL SHAPE at 0; patterns 9 and 0 have the same decay pattern. Move
the cursor to ENVL PER COARSE and set the period to 20. This period value will play
the musical note just long enough to a low it to decay rather than end abruptly. Type P
for play.

PLAY A CHORD
Now that we have learned to produce a note with proper decay, a chord can be built using
the other two channels. Move the cursor back up to TONE PER FINE and over to the
right to channel B. Type 193 for an E-note. Move the cursor to channel C and type 163
for a G-note. Move the cursor down to ENABLE and set it to 56, which enables all three
channels for tone only. Move the cursor down to AMPLITUDE in the ALL column and
type 16 for variable level. This will set the amplitude of all three channels to 16. Type P
for play.

PLAY TWO CHORDS
The Sound Utility also allows you to play six notes simultaneously by setting three notes
on one screen and three on a second screen. The three notes you have just played appear
on the first screen. Type C and a new screen will appear. Note that the parameters are
cleared to zeros. Type C again to return to the first screen. The three notes are still there.

2-15
The screens are oriented to the speakers through which the sounds are played. The chord
just played was created for SPEAKER: 1. This designation appears in the upper left hand
corner. Type C and note that SPEAKER: 2, in the upper right hand corner, replaced
SPEAKER: 1
The next three notes are also C, E, and G notes but on a lower octave. These note values
include coarse tune values. Type the values as shown.

 MAX CHANNEL
 VAL ALL A B C
TONE PER FINE 255 0 209 7 140
TONE PER COARSE 15 0 3 3 2
NOISE PERIOD 31 0
ENABLE 63 56
AMPLITUDE 16 0 16 16 16
(FIX = 0-15/VAR = 16)
ENVL PER FINE 255 0
ENVL PER COARSE 255 20
ENVL SHAPE 15 0

Type P for play and listen to the deeper sound of this chord. Now, type B for both
speakers and listen to six notes simultaneously. Note that both speaker designations
appear at the top of the screen. If the sounds were continuous, R for reset would stop
them. Since the notes decay automatically, a reset is not necessary.

3-1
PROGRAMMING
Whether you compose music, dialogue or design special effects, your masterpieces are
unfinished until they are arranged in a production. What could be more original than to
enhance one of your own programs with sounds of your own creation?

The Introduction to this manual compared MOCKINGBOARD to the telephone of a
friend you wish to call. MOCKINGBDARD may be reached with the appropriate "area
code" and "phone number." The "area code" locates MOCKINGBOARD in one of the
input/output slots in the back of the Apple. This means that MOCKINGBOARD may be
placed in any slot, except 0. The Apple II Reference Manual states that this slot is
reserved for RAM, ROM or interface expansion.

The sound chip and speech chip do not speak the same language. Therefore, instructions
to any chip must go through a translator. This translator is called the 6522 Versatile
Interface Adapter or just 6522. There are only four instructions for the sound chips and
one for the speech chips which must be translated.

THE SOUND CHIPS
The Sound Utility program demonstrated all the parameters needed to produce a sound.
There are 16 in all: six Tone Period (Fine and Coarse), one Noise Period, one Enable,
three Amplitude, two Envelope Period (Fine and Coarse), one Envelope Shape and two
unused. When all 16 parameter values are received by the sound chip via the 6522, sound
is generated.

With the Sound Utility, the cursor is positioned over one of the 14 parameters and a value
is typed. For Example, if we wish to set the Tone Period (Fine Tune) for channel A to
145, the cursor is moved to the first row, column A, and 145 is typed in. A similar
location called a register address, is also designated on the sound chip for this parameter.
Each parameter has its own register address numbered 0 to 15. Table 3-1 shows each
parameter and its associated register address. A chart of all registers and their
descriptions is provided in Appendix B, page A-3.

3-2
REGISTER
ADDRESS SOUND PARAMETERS
0 Tone Period Fine Tune for channel A
1 Tone Period Coarse Tune for channel A
2 Tone Period Fine Tune for channel B
3 Tone Period Coarse Tune for channel B

4 Tone Period Fine Tune for channel C
5 Tone Period Coarse Tune for channel C
6 Noise Period
7 Enable
8 Amplitude for channel A
9 Amplitude for channel B
10 Amplitude for channel C
11 Envelope Period Fine Tune
12 Envelope Period Coarse Tune
13 Envelope Shape
14 & 15 Unused

 Table 3-1 Sound Chip Registers

HOW THE SOUND PARAMETERS ARE SET ON THE CHIP
A sample program called TABLE Access Routine, provided on the demonstration disk,
illustrates one method of setting sound parameters on the chip. Let's use our earlier
example and set the Tone Period Fine Tune for channel A to 145. Table 3-1 indicates that
Tone Period Fine Tune for channel A is register address 0. The Table Access Routine is
designed to send values to all sixteen registers sequentially, beginning with 0. It first
sends MOCKINGBOARD the register address (0) of the data to be sent. Next, it sends
MOCKINGBOARD the data (145). The Table Access Routine continues this process
until all sixteen register addresses have been sent data. If a parameter does not need to be
set, you should send a zero to that register address.

3-3
All information to MOCKINGBOARD flows on one of two direct lines. The first line
sends only register addresses and data. But MOCKINGBOARD can not distinguish
addresses from data, because the addresses and data are all numerical values. The second
line is used to send an instruction identifying what was sent on the other line. Let's use
our example to clarify the information flow to MOCKINGBOARD. When 0 is sent on
the first line, the second line sends instructions to MOCKINGBOARD that the 0 is a
register address. Next, 145 is sent on the first line and the instruction to
MOCKINGBOARD that 145 is data, is sent on the second line. The two lines work
almost simultaneously. In fact, information may be sent to MOCKINGBOARD
continuously, because it flows in only one direction.

A separate program called PRIMary Routines (also provided on the disk), contains the
four subroutines to handle the instructions to MOCKINGBOARD. They are:

INIT subroutine. Initializes or primes MOCKINGBOARD to receive information. The
initialization process is done once at the beginning of a program. MOCKINGBOARD
must be initialized or sound parameter s sent to it will be ignored. Your program will
continue, but no sound will be generated. MOCKINGBOARD does not have to be
initialized again during the same program, unless the computer is shut off or the system is
reset.

LATCH subroutine. Tells MOCKINGBOARD that a register address is being sent to it.

WRITE subroutine. Tells MOCKINGBOARD that data (a parameter value) is being sent.

RESET subroutine. Clears all sixteen registers to zeros. As a precautionary measure, the
registers should be RESET at the start of a program to avoid generation of unexpected
sounds.

These two programs, Table Access Routine and Primary Routines, work together to send
the proper instructions and data to MOCKINGBOARD. The Table Access Routine
orchestrates the task. While Primary Routines send instructions to MOCKINGBOARD, it
is the Table Access Routine which selects the appropriate instruction to send.

3-4
To understand the principles behind these two programs, let's examine what happens in a
mailroom. The parallel between a mailroom and MOCKINGBOARD will clarify how
MOCKINGBOARD transfers data for sound generation.

mail The mail truck arrives each day at 9.00 am. The mail
 clerk is prepared to receive the mail at this time each day.
MOCKINGBOARD CALL the INIT routine at the beginning of your

program. This routine prepares MOCKINGBOARD to
receive information.

mail The mail is sorted into piles for each mail slot. Each mail
slot belongs to a particular individual and is appropriately
labelled.

MOCKINGBOARD Each sound is described by I 6 sound parameters and
 those parameters correspond to a particular register on the

sound chip. The registers, numbered from 0 to 15,
correspond to the mail slots, Each sound parameter is
assigned to a register just as a name on the mail associates
it with a particular mail slot. The sound parameters are
predetermined and stored in memory.

mail Before the new mail is placed into the mail slots, each slot
 is checked to make sure it is empty.

MOCKINGBOARD The Table Access Routine RESETs (or clears) all 16
registers as a precaution against unwanted sounds.

mail The mail is sorted in mail slot order and the slot door for
 the first pile is opened.
MOCKINGBOARD The Table Access Routine sends the register address to

 MOCKINGBOARD. It also tells the subroutine LATCH
 (Primary Routines) to send instructions to MOCKING-
 BOARD to "latch" onto that register so the data will know
 where to go.

mail The first pile is retrieved and placed in the opened mail
slot.

3-5
MOCKINGBOARD The Table Access Routine retrieves the data for the
 first register from its place in memory and sends it to
 MOCKINGBOARD. It also tells the subroutine, WRITE

 (Primary Routines), to instruct MOCKINGBOARD to
 place that data into the latched register.

mail Each remaining pile of mail is processed in the same
manner. The distribution of mail is completed when all the
piles have been placed in their respective slots.

MOCKINGBOARD The next register is latched and the corresponding data is
 written to that register. When al 16 registers are filled,
 MOCKINGBOARD will generate a sound and send it to
 the speakers.

LATCH and WRITE are similar to the standard BASIC programming command, POKE.
The address is identified first, then the data to be poked.

The data retrieval method used in the Table Access Routine is comparable to the standard
programming commands, DATA and READ, where data is retrieved and read into the
program for processing.

SUMMARY OF PRIMARY ROUTINES AND TABLE ACCESS ROUTINE
The Primary Routines consist of four subroutines called INIT, LATCH, WRITE, and
RESET. Each subroutine has a specific function in the transmission of instructions to
MOCKINGBOARD. These subroutines utilize the instruction line to transmit
information to MOCKINGBOARD. Each tells MOCKINGBOARD what to do with the
information being transmitted on the address/data line.

The Table Access Routine coordinates the flow of information to MOCKINGBOARD by
sending information on the address/data line and selecting the appropriate Primary

Routines instruction for the address/data sent. As the name of the line indicates, only a
register address or data is transmitted on this line.

The Table Access Routine also retrieves the data from a memory location where sound
parameters are stored. The data can be POKEd into memory at a specific location by
READing the data into your program with a Data statement. The data may be stored in
any unused memory location, but the Table Access Routine must be told its location.

3-6
The data is POKEd in register address order. Conveniently, the order is sequential.
Therefore, the data for the first register is POKEd into the first address of the memory
location, then the data for the second register is POKEd into the next consecutive address
and so forth until all sixteen have been POKEd. If more than one set of sound parameters
are needed, the next set of parameters may be stored immediately following the first set.
When the second sound is to be played, the Table Access Routine must know where this
set of sound parameters begin (start of first sound plus 16), The two sound chips on
MOCKINGBOARD may be accessed separately. Each chip uses the same method of
instruction and address/data transmission. At the beginning of this section, we mentioned
that the only difference between the two sound chips was that each had its own "phone
number." Therefore, both the Primary Routines and Table Access Routines have
duplicate sets of code to access each separately. Included in the Primary Routines is
another set of four subroutines called INIT2, LATCH2, WRITE2 and RESET2. The
Table Access Routine also has a duplicate set of code labelled in a similar manner.

SIREN SOUND EFFECT
Type this program right on your demonstration disk. (You may leave out the REM
(remark) statement, as it serves only to explain the flow of the program.) It is the first
sound of a siren. If you are using a fresh disk, you must copy the PRIMary Routines and
the TABLE Access Routine onto your disk and run them either before you run the
program or within the program itself. (Delete last line of TABLE.) Also,
MOCKINGBOARD must be initialized at the beginning, with a CALL 36864 (INIT) and
CALL 36908 (INIT2).

5 REM
 ***DATA FOR SOUND; 145=FINE TUNE; 62=ENABLE;
 15=AMPLITUDE
10 DATA 145,0,0,0,0,0,0,62,15,0,0,0,0,0,0,0
18 REM
 ***STARTING ADDRESS FOR STORAGE OF SOUND DATA
20 A=33024

3-7

25 REM

 ***READ AND STORE ALL VALUES FOR SOUND IN
SEQUENTIAL
 ORDER STARTING AT LOCATION 33024
 ***WHEN X=0, IT IS ADDED TO "A" WHICH IS 33024 TO
EQUAL
 33024. PLACE THE FIRST DATA FROM LINE 10, 145, INTO
 LOCATION 33024

30 FOR X=0 TO 15:READ D
40 POKE A+X,D
50 NEXT
75 REM
 ***USE TEMPORARY LOCATIONS 8 AND 9 TO POINT TO THE
 STARTING ADDRESS OF SOUND, 33024; CALL TABLE
ACCESS
 ROUTINE TO SEND DATA TO MOCKINGBOARD AND PLAY
 THE SOUND
80 POKE 8,0:POKE 9,129:CALL 32768
85 REM
 ***USE DELAY LOOK FOR DURATION OF SOUND
90 FOR T=1 TO 342: NEXT T
145 REM
 ***CALL RESET TO STOP THE SOUND AND CLEAR
REGISTERS
150 CALL 36897
160 END

Save and run this program. Lines 5 through 50 place the set of sound parameters
sequentially in memory, starting at 33024. Line 80 plays the sound for the period of time
designated in line 90. Line 150 stops the sound with a CALL TO RESET.

Now, let's add the second part of the siren sound

15 DATA 86,1,0,0,0,0,0,62,15,0,0,0,0,0,0,0
30 FOR X=0 TO 31: READ D
100 POKE 8,16:POKE 9,129: CALL 32768
120 FOR T=1 TO 342:NEXT T

Line 15 is the second sound data and line 30 is changed to READ 16 more data. Line 100
plays the second sound. The temporary locations, 8 and 9,

3-8
are changed to point to the second set of sound data. The Table Access Routine is
CALLed to send it to MOCKINGBOARD. Line 120 allows us to hear this sound for a
given period of time.

Save and run this program, Did you hear a siren? This program demonstrates two
manipulation techniques, duration (lines 90 and I 20) and sequencing of two or more
sounds (lines 80 through 120).

A delay loop follows each note because, otherwise, the notes would alternate too quickly
for you to hear them. The only difference between the two notes is the tone period
registers for channel A, refer to the chart on musical notes, Appendix E, page A-6. The
first note is a middle or 4th octave A with a Tone Period value of 145. The second note
falls between F# and G in the third octave; it has a Tone Period value of 342 or a coarse
tune of 1 and fine tune of 86.

The changes necessary to create these two tones involve only two registers. Therefore,
load the base parameters needed to create the notes and change the Tone Period registers
as required to alter the note. In addition, lines 70 and l40 places the sound generation in a
loop so that the sir en will play five times. Here's how to do it.

l0 DATA 0,0,0,0,0,0,0,62,l5,0,0,0,0,0,0,0
20 A=33M4
30 FOR X = 0 TO l5: READ D
40 POKE A+X,D
50 NEXT
55 REM
 ***SET THE POINTERS TO POINT TO LOCATION 33024
60 POKE 8,0: POKE 9,129
65 REM
 ***REPEAT THE SIEN SEQUENCE FIVE TIMES
70 FOR Z = 1 TO 5
75 REM
 ***PLAY THE FIRST SOUND
80 POKE 33024,145: P0KE 33025,0:CALL 32768
90 FOR T = 1 TO 342: NEXT T

3-9
95 REM
 ***PLAY THE SECOND SOUND. CHANGE FIRST REGISTER TO
 86 AND SECOND REGISTER TO 1. SINCE TONE PERIOD
 =342, FINE TUNE = 342-INT(342/256)*256 AND COARSE TUNE
 TUNE=INT(342/256)
100 POKE 33024,86:POKE 33025,1:CALL 32768
120 FOR T=1 TO 342:NEXT T
135 REM
 ***IF Z IS LESS THAN 5, PLAY THE SEQUENCE AGAIN
140 NEXT
145 REM
 ***SHUT THE SOUND OFF
150 CALL 36897
160 END

Now, try this same program, but this time make use of the two sound chips and both
speakers. The Primary Routines and Table Access Routine have secondary sets of
routines to produce sounds out of the second speaker with the other sound chip. You will
be able to play one tone through the left speaker and the other through the right.

The Table Access Routine uses a temporary memory location to store the beginning
address of the sound to be played back. This stored address is referred to as a "pointer"
because it points to where the sound data begins.

We have already used locations 8 and 9, in our siren example, to store the address for the
first sound chip. The second sound chip uses Location 10 and 11. The address is divided
into high and low bytes.

High byte is calculated by taking the beginning address and dividing it by 256. The
resulting whole number is stored in location 9 or 11. Low byte is the remainder from the
division and is stored in location 8 or 10. The siren sound effects program stores the data
at 33024. When divided by 256, this address equals 129 with no remainder. The 129 is
stored in 9 or 11 and 0 is stored in 8 or 10.

3-10
To produce the siren sound through both speakers, set the pointer locations, 10 and 11 to
33024. The pointer for the first sound chip, 8 and 9, also points to this same address.
Both chips may utilize data in the same memory location because the data is not affected
by use,
D < = = >POINTER LOC 8, 9 -> SOUND CHIP 1 -> SPEAKER 1
A

T
A < = = >POINTER LOC 10, 11 -> SOUND CHIP 2 -> SPEAKER 2

Change the following lines as indicated:

62 POKE l0,0: POKE 1l,l29
100 POKE 33024,86:POKE 33025,1
110 CALL 36897:CALL 32796
130 CALL 3694l

Line 110, the CALL to 36897, is the RESET subroutine (Primary Routine) for the first
sound chip. This CALL will shut off the first sound chip. If we do not shut off one of the
chips, both would produce sound at the same time, and we would create a two-note
chord. This CALL was not necessary in the earlier programs because both notes were
generated by one sound chip. The second sound wrote over the register values of the first
sound.

Line 100, the CALL 32768, is dropped and picked up in line 110 as CALL 32796, which
is the Table Access Routine for the second sound chip. It plays the second note through
the other speaker. Line 130 turns off the second sound with a CALL to RESET2. Note
that the pointers (8,9 and 10,11) do not have to be POKEd each time with the address of
the sound data. The sound data has not moved from its location; therefore, its address
remains the same.

10 DATA 0,0,0 0,0,0,0,62,15,0,0,0 0,0,0,0
20 A = 33024
30 FOR X =0 TO 15: READ D
40 POKE A+ X,D
50 NEXT

3-11
55 REM

***SET BOTH SOUND CHIP POINTERS TO POINT TO
THE ADDRESS OF THE SOUND DATA, 33024.

60 POKE 8,0:POKE 9,129
62 POKE 10,0:POKE 11, 129
70 FOR Z= 1 TO 5
75 REM
 ***CHANGE THE SOUND DATA IN MEMORY TO THE FIRST
 SOUND AND PLAY IT THROUGH THE FIRST SPEAKER WITH
 A CALL TO THE TABLE ACCESS ROUTINE. (NOTE THAT

 32768 IS THE ROUTINE FOR THE FIRST CHIP.)
80 POKE 33024,145:POKE 33025,0:CALL 32768
90 FOR T = 1 TO 342:NEXT T
95 REM
 ***CHANGE THE SOUND DATA IN MEMORY TO
 THE SECOND SOUND
100 POKE 33024,86:POKE 33025,1
105 REM
 ***TURN OFF THE FIRST SOUND CHIP WITH A CALL RESET
 AND PLAY THE SECOND SOUND THROUGH THE SECOND
 SPEAKER WITH A CALL TO THE TABLE ACCESS ROUTINE.
 (NOTE 32796 IS THE ROUTINE FOR THE SECOND CHIP.)
110 CALL 36897:CALL 32796
120 FOR T=1 TO 342:NEXT T
125 REM
 ***CALL RESET2 TO SHUT OFF THE SECOND SOUND CHIP
130 CALL 36941
135 REM
 ***IF Z IS LESS THAN 5, PLAY THE SEQUENCE AGAIN
140 NEXT
160 END

In this last example, one tone of the siren is played through one speaker and the other
tone through the second speaker. Other variations are also possible.

3-12
THE SPEECH CHIPS
The Text To Speech Rule Editor is used to develop words or phrases for use in your
programs. Enter the Test Node from any character rule table and type in the word or
phrase you wish to use. Adjust the pronunciation, using the parameter controls and stress
markers. Once you are satisfied with the quality of speech, save the word or phrase by
typing control-S from the Test Mode. Name the file using a maximum of eight characters,
beginning with a letter (A-Z).

The word or phrase saved is a composite file of all the speech parameters. However, the
composite file contains only data. This data is similar to the 16 sound parameters needed
to produce a sound effect. While the sound parameters are finite, the speech parameters
consist of four parameters for each phoneme code generated to produce the speech. If a
word consists of 20 phoneme codes, then the composite file of that word contains 100
parameters (including the phoneme codes).

From the Rule Editor, a word or phrase is spoken using the Text To Speech Algorithm.
Outside of the Rule Editor, another type of program must be employed to generate
speech. The Text To Speech Algorithm is no longer necessary, because the conversion
from text to phoneme codes has already been done and saved. A program called the
Composite Driver, included on the demonstration disk, acts as a messenger and transmits
speech codes to the speech chip from the composite data file.

The Composite Driver is similar in concept to the Table Access Routine. The Table
Access Routine retrieves data and sends it to the sound chip. The Table Access Routine
knows where the data is located by using a pointer. The Composite Driver also has a
pointer which tells it where the speech data is located.

These similarities standardize the programming method employed in generating both
sound and speech. Let's enhance a short program with speech. Load the following files in
memory prior to running the sample program or at the beginning of the sample program:

BLOAD COMPOSITE DRIVER
BLOAD < composite data file name >, A < address in memory)

The composite data file may be stored in any unused memory space.

3-13
The pointer location for the beginning address of the speech data is stored in location 249
and 250. The high byte of the address is stored in 250 and the low byte is stored in 249. If
you are unfamiliar with high and low bytes, the high byte is obtained by dividing the
address by 256 and the low byte is the remainder of this division. If the data is stored at
33024, then the high byte is 33024/256 or 129. The low byte is zero since there is no
remainder.
The following phrase was created using the Rule Editor and saved on the demonstration
disk as PHRASE 1:

WITH MOCKINGBOARD YOU'LL NEVER BE SPEECHLESS

Type in the program below on your copy of the demonstration disk. If you are using a
fresh disk, copy the COMPOSITE DRIVER and PHRASE 1 files onto your disk.

IO HOME
20 D$ = CHR$(4)
25 REM
 ***LOAD COMPOSITE DRIVER
30 PRINT D$"BLOAD CONPOSITE DRIVER"
35 REM

 ***LOAD THE DATA FILE PHRASE 1 AT LOCATION 35072
40 PRINT D$"BLOAD PHRASE 1, A 35072"
45 REM
 ***TELL COMPOSITE DRIVER WHERE THE DATA FILE
 PHRASE 1 RESIDES. CONVERT 35072: HIGH BYTE-INT
 (35072/256) OR 137, PUT IT IN LOCATION 250; LOW BYTE-INT
 (35072/256) - 137 OR 0, PUT IT IN LOCATION 249.
50 POKE 249,0:POKE 250, 137
55 REM
 ***TELL COMPOSITE DRIVER TO BEGIN SPEAKING.
 COMPOSITE DRIVER IS LOCATED AT 27904.
60 CALL 27904
70 END

This program will speak the entire phrase and then end at line 70. In most cases, the
program would not speak and then end, it would continue on with other tasks. If this
program did not end at line 70, the speech could be interrupted prematurely by an input
from the keyboard or program code. In order to protect against such an interruption, the
program should check to determine if the speech chip is finished speaking.

3-14
When MOCKINGBOARD speaks, a busy flag is set. This flag is located at location 255.
When MOCKINGBOARD is finished speaking, the flag is cleared, Your program can
monitor this flag. A standard BASIC programming command called PEEK may be used
to look at the contents of this location.

Type the following lines into the above program. Delete line 70. Save the new version of
the program and run it.

80 VTAB 6:HTAB 1:PRINT "WOULD YOU LIKE TO HEAR IT AGAIN?";
 :GET A$
90 IF A$ = "Y" THEN GOTO 60
100 IF A$ =- "N" THEN GOTO 120
11O GOTO 80
120 END

The question, "WOULD YOU LIKE TO HEAR IT ACAIN? " appears on the screen
almost at the same time as the speech begins. If you respond to this question before the
speech ends, you will interrupt it. Try it. Press the Y key several times in quick
succession. The phrase is not allowed to finish until you stop pressing the key. To
prevent this, insert the following lines in this program. Save and run it. You will no
longer be permitted to interrupt the speech.

65 REM
 ***CHECK TO SEE IF FINISHED SPEAKING. IF NOT, KEEP
 CHECKING UNTIL IT IS.
70 IF PEEK (255)> 0 THEN 70

To incorporate more than one phrase in your program, load each file at the beginning of
the program. Load each one at a different location, so you will be able to call them at
will. Change the pointers, 249 and 250, to point to the phrase you wish spoken just before
CALLing the composite driver. Let's try it with PHRASE2, which says: I LOVE TO
TALK. This time, let's print the phrases on the screen.

10 HOME
20 D$ =- CHR$(4)
30 PRINT D$"BLOAD COMPOSITE DRIVER"
40 PRINT D$"BLOAD PHRASE1, A 35072"
42 REM
 ***LOAD THE SECOND PHRASE AT 36864

3-15
45 PRINT D$"BLOAD PHRASE2, A 36864"
47 PRINT "WITH MOCKINGBOARD YOU'LL NEVER BE SPEECHLESS"
50 POKE 249,0: POKE 250,137
60 CALL 27904
70 IF PEEK (255)>0 THEN 70
80 VTAB 6:HTAB 1:PRINT "WOULD YOU LIKE TO HEAR IT AGAIN?";
 :GET A$
90 IF A$ = "Y" THEN GOTO 60
100 IF A$ = "N" THEN GOTO 120
110 GOTO 80
120 VTAB 10:HTAB 1:PRINT "WOULD YOU LIKE TO HEAR ANOTHER
 PHRASE?"; :GET B$
130 IF B$ = "Y" THEN GOTO 152
140 IF B$ = "N" THEN GOTO 170
150 GOTO 120
152 VTAB 10:HTAB 1:PRINT "I LOVE TO TALK!"
155 REM
 ***CHANGE THE POINTERS TO POINT TO PHRASE2 AT 36864
 :HIGH BYTE = INT (36864/256) OR 144, PUT IN 250; LOW BYTE
 = 36864/256-144 OR 0, PUT IN 249. TELL COMPOSITE DRIVER
 TO SPEAK THIS PHRASE.
160 POKE 249,0:POKE 250, 144:CALL 27904

170 END

Save and run this program. If you would like to try out a different phrase, change line 40
and/or 45 to load your file. Don't forget to change the phrase printed on the screen in
lines 47 or 152. Why not make all the prompts in this program speak?

USING TEXT TO SPEECH AND THE RULE TABLE IN YOUR PROGRAM
The above programming method is a very convenient way to generate speech, provided
you know what vocabulary will be required in your program. This is not always possible
or desirable. You may wish to have a person using your program type in his own
responses. These words could a so be spoken by MOCKINGBOARD. However, unless
the response is limited to a predefined vocabulary, words not previously coded will be
left unsaid.

Another method of generating speech will allow MOCKINGBOARD to speak an
unlimited vocabulary. This program incorporates the Text to Speech

3-16

program included on the demonstration disk. It uses a table of rules (also included on the
disk to convert text into speech. The text may consist of characters typed from the
keyboard or characters assigned to a string variable. It may also be text saved in a text
file. If your program is very large, this method may not be economically implemented,
due to the size of the rule table. However, if you can anticipate the vocabulary that may
be used in your program, including responses from the user, an empty rule table may be
used to build a custom list of words, The empty rule table will allow you to enter only
rules which may pertain to your program. If you prefer, you may also trim the current
rule table to a size more suitable to your program and save the revised version under
another name.

Any rule table may be included in your program along with Text To Speech. A sample
program using this method is given below. Regardless of whether you are converting
input from the keyboard or assigning it to a string variable within your program, you
must assign the input to the variable MB$. The program, which Text To Speech uses to
retrieve the text data, looks for this variable. This program is called MB$ GETTEXT.

IO HOME
20 D$ = CHR$(4)
30 PRINT D$"BLOAD TEXT TO SPEECH"
40 PRINT D$"BLOAD MB$ GETTEXT"
45 REM
 ***LOAD THE RULE TABLE

50 PRINT D$"BLOAD MKB:RULE. TABLE"
60 PRINT D$"BLOAD NKB:RULE. LENGTH"
70 PRINT D$"BLOAD MKB:RULE. INDEX"
75 REM
 ***ASSIGN THE PHRASE TO BE SPOKEN TO MB$
80 MB$ = "WITH MOCKINGBOARD YOU'LL NEVER BE SPEECHLESS"
85 REM
 ***TELL TEXT TO SPEECH TO BEGIN SPEAKING THE PHRASE
90 CALL 26123
95 REM
 ***CHECK TO SEE IF FINISHED SPEAKING. IF NOT, KEEP
 CHECKING UNTIL IT IS.
100 IF PEEK (255)>0 THEN 100
110 END

3-17
MKB:RULE is the standard rule table designed by Sweet Micro Systems. You may
replace this with your rule table file name. The .TABLE, .LENGTH and .INDEX must be
appended to your rule table file name. These files monitor the expansion and reduction of
the rule table as well as where all the characters reside in memory. They are always
updated and saved when you save a rule table.
If you wish to speak a response from the user change line 80 to:

80 INPUT "ENTER TEXT: ";MB$

The INPUT statement may be any question or prompt.

A-1
APPENDIX A Phoneme Chart

LIST OF CONSONANT PHONEMES

 CODE
PHONEME 1 2 3 4 EXAMPLES

B 24 64 A4 E4 bat, tab
D 25 65 A5 E5 dub, bud
F 34 74 B4 EA fat, ruff, photo, laugh

HV 2A 6A AA EA eh!
HVC 2B 6B AB EB d(h)ouble
HF 2C 6C AC EC hat, home
HFC 2D 6D AD ED P(h)ad, fluff(h), black(h)
HN 2E 6E AE EE hnh-hnh
J 31 71 81 F1 job, rage
K 29 69 A9 E9 kit, tick
KV 26 66 A6 E6 big, gag
L 20 60 A0 E0 lab, ball
LI 21 61 A1 E1 plan, club, slam
LF 22 62 A2 E2 bott/e, channe/
M 37 77 B7 F7 mad, dam
N 38 78 B8 F8 not, ton
NG 39 79 B9 F9 ring, rang
P 27 67 A7 E7 pat, tap
R 1D 5D 9D DD rat
S 30 70 B0 F0 sat, lass
SCH 32 72 B2 F2 shop, push
T 28 68 A8 E8 tap, pat
THV 35 75 B5 F5 bathe, the
TH 36 76 B6 F6 bath, theory
V 33 73 B3 F3 vow, pave
W 23 63 A3 E3 why, quake
Y1 04 44 84 C4 you
Z 2F 6F AF EF zap, maze
 00 40 80 C0 [pause]

The 9 columns of code for each phoneme allow you to alter the length of any sound, and
choose the version which provides the most intelligibility and natural quality. Each
successive column represents a phoneme which is approximately 25% shorter than its
predecessor. For most purposes, column 1 will serve as a standard value.

A-2
APPENDIX A Phoneme Chart (continued)

LIST OF VOWEL PHONEMES

 CODE
PHONEME 1 2 3 4 EXAMPLES

A 08 48 88 C8 day
AI 09 49 89 C9 care
AE 0C 4C 8C CC dad
AEI 0D 4D 8D CD laugh
AH 0E 4E 8E CE top, about
AHI 0F 4F 85 CF father

AW 10 50 90 D0 saw, caught
E 01 41 81 C1 beet, be
EI 02 42 82 C2 advent
EH 0A 4A 8A CA leg, said
EHI 0B 4B 8B CB silent
ER 1C 5C 9C DC third, urn, heard
I 07 47 87 C7 sit, bid
O 11 51 91 D1 boat
OO 13 53 93 D3 put, pull, look
OU 12 52 92 D2 orb
U I6 56 96 D6 boot, you
UI 17 57 97 D7 poor
UH I8 58 98 D8 cup
UHI 19 59 99 D9 circus
UH2 1A 5A 9A DA nation
UH3 1B 5B 9B DB nation

FOREIGN SOUNDS
AY 05 45 85 C5 francais French
A 3A 7A BA FA etre French or umlauted
A
 in German
E2 3E 7E BE FE schön German
IE 06 46 86 C6 il French
IU 14 54 94 D4 peut French
IUI 15 55 95 D5 Goethe German
OH 3B 7B BB FB menu, tu French
U 3C 7C BC FC fiihlen German
UH 3D 7D 8D FD menu, tu French
Y 03 43 83 C3 y French
LB 3F 7F BF FF il French
Rl 1E 5E 9E DE réponse French
R2 1F 5F 9F DF richtig German

A-3
APPENDIX A Programmable Sound Generator Registers

REGISTER DESCRIPTION DEC HEX

R0 FINE TUNE 0-255 00-FF
 CHANNEL A TONE PERIOD

R1 COARSE TUNE 0-15 00-0F

R2 FINE TUNE 1-255 00-FF
 CHANNEL B TONE PERIOD
R3 COARSE TUNE 0-15 00-0F

R4 FINE TUNE 0-255 00-FF
 CHANNEL C TONE PERIOD
R5 COARSE TUNE 0-15 00-0F

R6 NOISE PERIOD ALL CHANNELS 0-31 00-1F

R7 ENABLE NOISE/TONE 0-63 00-3F

R8 CHANNEL A AMPLITUDE 0-16 00-10
 AMPLITUDE LEVEL
R9 CHANNEL B AMPLITUDE MODE SELECT 0-16 00-10
 FIXED=0-15
R10 CHANNEL B AMPLITUDE VARIABLE=16 0-16 00-10

R11 FINE TUNE ENVELOPE 0-255 00-FF

R12 ENVELOPE PERIOD COARSE TUNE 0-255
 00-FF
 ENVELOPE

R13 ENVELOPE SHAPE/CYCLE CONT, ATTACK, 0-15
 00-0F
 ALT, HOLD

R14 NOT USED REGISTER VALUE NOT SIGNIFICANT
R15 NOT USED REGISTER VALUE NOT SIGNIFICANT

A-4
APPENDIX C Noise and Tone Enable Register
(adapted from General Instrument Programmable Sound Generator Data Manual)

Register Value Noise Channel Tone Channel Register Value Noise
Channel Tone Channel
DEC HEX C B A C B A DEC HEX C B
 A C B A
00 00 ON ON ON ON ON ON 32 20 - ON
 ON ON ON ON
01 01 ON ON ON ON ON - 33 21 - ON
 ON ON ON -
02 02 ON ON ON ON - ON 34 22 - ON
 ON ON - ON
03 03 ON ON ON ON - - 35 23 - ON
 ON ON - -
04 04 ON ON ON - ON ON 36 24 - ON
 ON - ON ON
05 05 ON ON ON - ON - 37 25 - ON
 ON - ON -
06 06 ON ON ON - - ON 38 26 - ON
 ON - - ON
07 07 ON ON ON - - - 39 27 - ON
 ON - - -
08 08 ON ON - ON ON ON 40 28 - ON
 - ON ON ON
09 09 ON ON - ON ON ON 41 29 - ON
 - ON ON -
10 0A ON ON - ON ON - 42 2A - ON
 - ON - ON
11 0B ON ON - ON - - 43 2B - ON
 - ON - -
12 0C ON ON - - ON ON 44 2C - ON
 - - ON ON
13 0D ON ON - - ON - 45 2D - ON
 - - ON -
14 0E ON ON - - - ON 46 2E - ON
 - - - ON
15 0F ON ON - - - - 47 2F - ON
 - - - -
16 10 ON - ON ON ON ON 48 30 - -
 ON ON ON ON
17 11 ON - ON ON ON - 49 31 - -
 ON ON ON -
18 12 ON - ON ON - ON 50 32 - -
 ON ON - ON

19 13 ON - ON ON - - 51 33 - -
 ON ON - -
20 14 ON - ON - ON ON 52 34 - -
 ON - ON ON
21 15 ON - ON - ON - 53 35 - -
 ON - ON -
22 16 ON - ON - - ON 54 36 - -
 ON - - ON
23 17 ON - ON - - - 55 37 - -
 ON - - -
24 18 ON - - ON ON ON 56 38 - -
 - ON ON ON
25 19 ON - - ON ON - 57 39 - -
 - ON ON ON
26 1A ON - - ON - ON 58 3A - -
 - ON - ON
27 1B ON - - ON - - 59 3B - -
 - ON - -
28 1C ON - - - ON ON 60 3C - -
 - - ON ON
29 1D ON - - - ON - 61 3D - -
 - - ON -
30 1E ON - - - - ON 62 3E - -
 - - - ON
31 1F ON - - - - - 63 3F - -
 - - - -

A-5
APPENDIX D Envelope Shape Register
(adapted from General Instrument Programmable Sound Generator Data Manual)

Register Val Bit Values
DEC HEX CONT ATTK ALT HOLD GRAPHIC REPRESENTATION

00 00 OFF OFF x x ____________

04 04 OFF ON x x /|____________

08 08 ON OFF OFF OFF \|\|\|\|\|\|\|\|\|\|\|\|\|\|\

09 09 ON OFF OFF ON ____________

10 0A ON OFF ON OFF \/\/\/\/\/\/\/\/\/\/\/\/\/

11 0B ON OFF ON ON \|

12 0C ON ON OFF OFF /|/|/|/|/|/|/|/|/|/|/|/|/|/|/|

13 0D ON ON OFF ON /

14 0E ON ON ON OFF /\/\/\/\/\/\/\/\/\/\/\/\/\

15 0F ON ON ON ON /|____________

A-6 ... A-8
APPENDIX E Equal Tempered Chromatic Scale(continued)
 (fCLOCK- 1.023 MHz)

 TONE PERIOD
 (decimal) (hex)
Note Octv Frequency Coarse Fine Coarse Fine
C 1 32.703 7 163 07 A3
C# 1 34.648 7 53 07 35
D 1 36.708 6 205 06 CD
D# 1 38.891 6 108 06 6C
E 1 41.203 6 15 06 0F
F 1 43.654 5 184 05 B8
F# 1 46.249 5 102 05 66
G 1 48.999 5 24 05 18
G# 1 51.913 4 207 04 CF
A 1 55.000 4 138 04 8A
A# 1 58.270 4 73 04 49
B 1 61.735 4 11 04 0B
C 2 65.406 3 209 03 D1
C# 2 69.296 3 154 03 9A
D 2 73.416 3 102 03 66
D# 2 77.782 3 54 03 36
E 2 82.406 3 7 03 07
F 2 87.308 2 220 02 DC
F# 2 92.498 2 179 02 B3
G 2 97.998 2 140 02 8C
G# 3 103.826 2 103 02 67
A 3 110.000 2 69 02 45
A# 3 116.540 2 36 02 24
B 3 123.470 2 5 02 05
C 3 130.812 1 232 01 E8
C# 3 138.592 1 205 01 CD
D 3 146.832 1 179 01 B3

D# 3 155.564 1 155 01 9B
E 3 164.812 1 131 01 83
F 3 174.616 1 110 01 6E
F# 3 184.996 1 89 01 59
G 3 195.996 1 70 01 46
G# 3 207.652 1 51 01 33
A 3 220.000 1 34 01 22
A# 3 233.080 1 18 01 12
B 3 246.940 1 2 01 02
C 4 261.624 0 244 00 F4
C# 4 277.184 0 230 00 E6
D 4 293.664 0 217 00 D9
D# 4 311.128 0 205 00 CD
E 4 329.624 0 193 00 C1
F 4 349.232 0 183 00 B7
F# 4 369.992 0 172 00 AC
G 4 391.992 0 163 00 A3
G# 4 415.304 0 153 00 99
A 4 440.000 0 145 00 91
A# 4 466.160 0 137 00 89
B 4 493.880 0 129 00 81
C 5 523.248 0 122 00 7A
C# 5 554.368 0 115 00 73
D 5 587.328 0 108 00 6C
D# 5 622.256 0 102 00 66
E 5 659.248 0 96 00 60
F 5 698.464 0 91 00 58
F# 5 739.984 0 86 00 56
G 5 783.984 0 81 00 51
G# 5 830.608 0 76 00 4C
A 5 880.000 0 72 00 48
A# 5 932.320 0 68 00 44
B 5 987.760 0 64 00 40
C 6 1046.496 0 61 00 3D
C# 6 1108.736 0 57 00 39
D 6 1174.656 0 54 00 36
D# 6 1244.512 0 51 00 33
E 6 1318.496 0 48 00 30
F 6 1396.928 0 45 00 2D
F# 6 1479.968 0 43 00 2B
G 6 1567.968 0 40 00 2B
G# 6 1661.216 0 38 00 26
A 6 1760.000 0 36 00 24
A# 6 1864.640 0 34 00 22
B 6 1975.520 0 32 00 20
C 7 2092.992 0 30 00 1E

C# 7 2217.472 0 28 00 1C
D 7 2349.312 0 27 00 1B
D# 7 2489.024 0 25 00 19
E 7 2636.992 0 24 00 18
F 7 2793.856 0 22 00 16
F# 7 2959.936 0 21 00 15
G 7 3135.936 0 20 00 14
G# 7 3322.432 0 19 00 13
A 7 3520.000 0 18 00 12
A# 7 3729.280 0 17 00 11
B 7 3951.040 0 16 00 10
C 8 4185.984 0 15 00 0F
C# 8 4434.944 0 14 00 0E
D 8 4698.624 0 13 00 0D
D# 8 4978.048 0 12 00 0C
E 8 5273.984 0 12 00 0C
F 8 5587.712 0 11 00 0B
F# 8 5919.872 0 10 00 0A
G 8 6271.872 0 10 00 0A
G# 8 6644.864 0 9 00 09
A 8 7040.000 0 9 00 09
A# 8 7458.560 0 8 00 08
B 8 7902.080 0 8 00 08

A-9
APPENDIX F Assembly Language Program Listings

 1 *PRIMARY ROUTINES
 2 *FOR SLOT 4
 3 *
 4 ORG $9000
 5 * ;ADDRESSES
 FOR FIRST
 6522
 6 ORB EQU $C400 ;PORT B
 7 ORA EQU $C401 ;PORT A
 8 DDRB EQU $C402 ;DATA
DIRECTION
 REGISTER
(A)

 9 DDRA EQU $C403 ;DATA
DIRECTION
 REGISTER
(B)
 10 * ;ADDRESSES
 FOR
SECOND
 6522
 11 ORB2 EQU $C480 ;PORT B
 12 ORA2 EQU $C481 ;PORT A
 13 DDRB2 EQU $C482 ;DATA
DIRECTION
 REGISTER
(B)
 14 DDRA2 EQU $C483 ;DATA
DIRECTION
 REGISTER
(A)

15 *
16 *ROUTINES FOR FIRST 6522
17 *

9000: A9 FF 18 INIT LDA #$FF ;SET PORT A
 FOR
OUTPUT
9002: 8D O3 C4 19 STA DDRA
9005: A9 07 20 LDA #$07 ;SET PORT B
 FOR
OUTPUT
9007: 8D 02 C4 21 STA DDRB
900A: 60 22 RTS ;RETURN

23 *
900B: A9 07 24 LATCH LDA #$07 ;SEND "LATCH

 COMMAND"
900D: 8D 00 C4 25 STA ORB ;TO SOUND
 CHIP
9010: A9 04 26 LDA #$04 ;THROUGH
 PORT B
9012: 8D 00 C4 27 STA ORB
9015: 60 28 RTS ;RETURN

29 *
9016: A9 06 30 WRITE LDA #$06 ;SEND "WRITE

 COMMAND"
9018: 8D 00 C4 31 STA ORB ;TO SOUND
 CHIP

901B: A9 04 32 LDA #$04 ;THROUGH
 PORT B
901D: 8D 00 C4 33 STA ORB
9020: 60 34 RTS ;RETURN

35 *
9021: A9 00 36 RESET LDA #$00 ;SEND "RESET

 COMMAND"
9023: 8D 00 C4 37 STA ORB ;TO SOUND
 CHIP
9026: A9 04 38 LDA #$04 ;THROUGH
 PORT B
9028: 8D 00 C4 39 STA ORB
902B: 60 40 RTS ;RETURN

41 *
42 *ROUTINES FOR SECOND 6522
43 *

902C: A9 FF 44 INIT2 LDA #$FF ;SET PORT A
 FOR
OUTPUT
902E: 8D 83 C4 45 STA DDRA2
9031: A9 07 46 LDA #$07 ;SET PORT B
 FOR
OUTPUT
9033: 8D 82 C4 47 STA DDRB2
9036: 60 48 RTS ;RETURN

49 *
9037: A9 07 50 LATCH2 LDA #$07 ;SEND "LATCH

 COMMAND"
9039: 8D 80 C4 51 STA ORB2 ;TO SOUND
 CHIP
903C: A9 04 52 LDA #$04 ;THROUGH
 PORT B
903E: 8D 80 C4 53 STA ORB2
9041: 60 54 RTS ;RETURN

55 *
9042: A9 06 56 WRITE2 LDA #$06 ;SEND "WRITE

 COMMAND"
9044: 8D 80 C4 57 STA ORB2 ;TO SOUND
 CHIP
9047: A9 04 58 LDA #$04 ;THROUGH
 PORT B
9049: 8D 80 C4 59 STA ORB2
904C: 60 60 RTS ;RETURN

 61 *
904D: 9A 00 62 STA #$00 ;SEND "RESET

 COMMAND"
904F: 8D 80 C4 63 STA ORB2 ;TO SOUND
 CHIP
9052: A9 04 64 LDA #$04 ;THROUGH
 PORT B
9054: 8D 80 C4 65 STA ORB2
9057: 60 66 RTS ;RETURN

 1 "TABLE ACCESS ROUTINE
 2 "FOR SLOT 4
 3 *
 4 ORG $8000
 5 * ;ADDRESSES
 FOR FIRST
 6522
 6 PTR EQU $08 ;DATA
 POINTER
 7 ORA EQU $C401 ;PORT A
 8 LATCH EQU $900B ;LATCH SUB-
 ROUTINE
 9 WRITE EQU $9016 ;WRITE SUB-
 ROUTINE
 10 RESET EQU $9021 ;RESET SUB-
 ROUTINE
 11 * ;ADDRESSES
 FOR
SECOND
 6522
 12 PRT2 EQU $0A ;DATA
 POINTER
 13 ORA2 EQU $C481 ;PORT A
 14 LATCH2 EQU $9037 ;LATCH SUB-
 ROUTINE
 15 WRITE2 EQU $9042 ;RESET SUB-
 ROUTINE
 16 RESET2 EQU $904D ;RESET SUB-
 ROUTINE
 17 *

18 *ROUTINES FOR FIRST 6255
19 *

8000: 20 21 90 20 START JSR RESET ;RESET SOUND

 CHIP
8003: A0 00 21 LDY #$00 ;USED TO
IDENTIFY
 REGISTER
8005: 8C 01 C4 22 LOOP STY ORA ;# OF SOUND
 CHIP
8008: 20 0B 90 23 JSR LATCH
800B: B1 08 24 LDA (PTR),Y ;GET DATA FROM
 TABLE
800D: 8D 01 C4 25 STA ORA
8010: 20 16 90 26 JSR WRITE ;STORE IN
REGISTER
8013: C0 0F 27 CPY #$0F ;END OF DATA?
8015: F0 04 28 BEQ DONE ;YES, EXIT
8017: CB 29 INY
8018: 4C 05 80 30 JMP LOOP ;NO, GET NEXT
 SET
801B: 60 31 DONE RTS ;RETURN
 32 *
 33 *ROUTINES FOR SECOND 6522
 34 *
801C: 20 4D 90 35 START2 JSR RESET2 ;SAME
INSTRUCTIONS
 AS
801F: A0 00 36 LDY #$00 ;ABOVE
8021: 8C 81 C4 37 LOOP2 STY ORA2
8024: 20 37 90 38 JSR LATCH2
8027: B1 0A 39 LDA (PTR2),Y
8029: 8D 81 C4 40 STA ORA2
802C: 20 42 90 41 JSR WRITE2
802F: C0 0F 42 CPY #$0F
8031: F0 04 43 BEQ DONE2
8033: CB 44 INY
8034: 4C 22 80 45 JMP LOOP2
8037: 60 46 DONE2 RTS

1 "PROCESSOR LOOP
2 "FOR LASER AND BOMB
3 "SOUND EFFECT
4 *
5 ORG $8F00
6 * ;FOR FIRST 6522

 7 *
 8 PTR EQU $08 ;DATA POINTE

 9 TONE EQU $0A ;TONAL VALUE
 10 TIME EQU $0B ;TIME VALUE
FOR
 DELAY
 11 BASE EQU $C400 ;CARD ADDRESS
 12 ORA EQU BASE+1 ;PORT A
 13 TAR EQU $8000 ; TABLE ACCESS
 ROUTINE
 14 LATCH EQU $900B ;LATCH
SUBROUTINE
 15 WRITE EQU $9016 ;WRITE
SUBROUTINE
 16 RESET EQU $9021 ;RESET
SUBROUTINE
 17 WAIT EQU $FCAB ;WAIT
SUBROUTINE
 18 *
 19 *
8F00: A9 00 20 LASER LDA #$00 ;LOAD HIGHEST
8F02 85 0A 21 STA TONE ;FREQUENCY
VALUE
8F04: A9 0F 22 LDA #$0F ;LOAD SHORT
8F06: 85 0B 23 STA TIME ;TIME DELAY
8F08: 4C 13 8F 24 JMP START ;AND START
8F0B: A9 30 25 BOMB LOA #$30 ;LOAD MIDDLE
8F0D: 85 0A 26 STA TONE ;FREQUENCY
VALUE
8F0F: A9 40 27 LDA #$40 ;LOAD LONGER
8F11: 85 0B 28 STA TIME ;TIME DELAY
8F13: A9 90 29 START LDA #$90 ;SET TABLE
ADDRESS
8F15: 85 08 30 STA PTR
8F17: A9 81 31 LDA #$81
8F19: 85 09 32 STA PTR+1
8F1B: 20 00 80 33 JSR TAR ;TRANSFER DATA
8F1E: A9 00 34 LDA #$00 ;LATCH FIRST
 REGISTER
8F20: 8D 01 C4 35 STA ORA ;ADDRESS
8F23: 20 0B 90 36 JSR LATCH
8F26: A5 0A 37 LOOP LDA TONE ;GET TONE
VALUE
8F28: 8D 01 C4 38 STA ORA ;STORE IN
REGISTER
8F2B: 20 16 90 39 JSR WRITE
8F2E: A5 0B 40 LDA TIME ;GET TIME
VALUE

8F30: 20 A8 FC 41 JSR WAIT ;AND DELAY
8F33: E6 0A 42 INC TONE ;INCREMENT
TONE
 VALUE
8F35: A9 FF 43 LDA #$FF ;END OF
INCREASE?
BF37: C5 0A 44 CMP TONE
8F39: F0 03 45 BEQ DONE ;YES,EXIT
8F3B: 4C 26 8F 46 JMP LOOP ;NO, START
AGAIN
8F3E: A5 0B 47 DONE LDA TIME ;GET TIME
VALUE
8F40: 20 AB FC 48 JSR WAIT ;DELAY
8F43: A9 00 49 LDA #$00 ;RESTORE
ORIGINAL
8F45: 85 0A 50 STA TONE ;TONE VALUE
8F47: 20 21 90 51 JSR RESET ;CLEAR SOUND
CHIP
8F4A: 60 52 RTS ;REGISTERS AND
 RETURN

 1 *SPEECH-COMPOSITE DRIVER
 2 *
 3 ORG $6D00
 4 *
 5 TABPTR EQU $F9 ;DATA POINTER
 6 OUTPTR EQU $FB ;START OF DATA
 POINTER
 7 ENDPTR EQU $FD ;END OF DATA
 POINTER
 8 BUSY EQU $FF ;BUSY FLAG
 9 IRQL EQU $03FE ;INTERRUPT
VECTOR,
 LOW BYTE
 10 IRQH EQU $03FF ;INTERRUPT
VECTOR,
 HIGH BYTE
 11 BASE EQU $C440 ;FIRST SPEECH
CHIP
 12 DURPHON EQU BASE ;REGISTER 0 OF
 SPEECH
CHIP
 13 INFLECT EQU BASE+$01 ;REGISTER 1 OF
 SPEECH
CHIP

 14 RATEINF EQU BASE+$02 ;REGISTER 2 OF
 SPEECH
CHIP
 15 CTTRAMP EQU BASE+$03 ;REGISTER 3 OF
 SPEECH
CHIP
 16 FILFREQ EQU BASE+$04 ;REGISTER 4 OF
 SPEECH
CHIP
 17 PCR EQU $C0C ;PERIPHERAL
 CONTROL
 REG-6522
 18 IFR EQU $C40D ;INTERRUPT
FLAG
 REG-6522
 19 PCR EQU $C48C ;INTERRUPT
ENABLE
 REG-6522
 20 IFR EQU $C48D
 21 IER EQU $C48E
 22 *SETUP ROUTINE
 23 *
6D00: 78 24 SEI ;DISABLE
INTERRUPTS
6D01: A9 4D 25 LDA #<INTERR ;SET INTERRUPT
 VECTOR
6D03: 8D FE 03 26 STA IRQL ;TO POINT TO
 INTERRUPT
6D06: A9 6D 27 LDA #>INTERR ;SERVICE
ROUTINE
6D08: 8D FF 03 28 STA IRQH
 29 *
6D0B: AS FA 30 LDA TABPTR+1 ;GET HIGH
ADDRESS
 OF DATA
6D0D: 85 FC 31 STA OUTPTR+1 ;STORE IN WORK
 POINTER
6D0F: A6 F9 32 LDX TABPTR ;GET LOW
ADDRESS
 OF DATA
6D11: E8 33 INX ;INCREMENT
TWICE
6D12: E8 34 INX ;TO SKIP OVER
 LENGTH
BYTES

6D13: D0 02 35 BNE CONT ;CHECK FOR
PAGE
 BOUNDARY
6D15: E6 FC 36 INC OUTPTR+1
6D17: 86 FB 37 CONT STX OUTPTR ;STORE LOW
BYTE
 38 *
6D19: A0 01 39 LDY #$01
6D1B: B1 F9 40 LDA (TABPTR),Y ;GET HIGH
LENGTH
 BYTE
6D1D: 18 41 CLC
6D1E: 65 FA 42 ADC TABPTR+1 ;AND ADD TO
BASE
 ADDRESS
6D20: 85 FE 43 STA ENDPTR+1 ;STORE END
ADDRESS
6D22: 88 44 DEY
6D23: 81 F9 45 LDA (TABPRT),Y ;GET LOW
LENGTH
 BYTE
6D25: 18 46 CLC
6D26: 65 F9 47 ADC TABPTR ;AND ADD TO
BASE
 ADDRESS
6D28: 90 02 48 BCC CONT1 ;CHECK FOR
PAGE
 BOUNDARY
6D2A: E6 FE 49 INC ENDPTR+1
6D2C: 85 FD 50 CONT1 STA ENDPTR ;STORE END
ADDRESS
 51 *
6D2E: A9 FF 52 CONT5 LDA #$FF ;SET BUSY FLAG
6D30: 85 FF 53 STA BUSY ;AND SET
PERIPHERAL
 CONTROL
6D32: A9 0C 54 LDA #$0C ;REGISTER TO

 RECOGNIZE
6D34: 8D 0C C4 55 STA PCR ;SIGNAL FROM
SPEECH
 CHIP
6D37: A9 80 56 LDA #$80 ;RAISE CTRL BIT
IN
 REGISTER 3
6D39: 8D 23 C4 57 STA CTTRAMP

6D3C: A9 C0 58 LDA #$C0 ;SET
TRANSITIONED

 INFLECTION
6D3E: 8D 20 C4 59 STA DURPHON ;MODE IN
REGISTER 0
6D41: A9 70 60 LDA #$70 ;LOWER CTRL
BIT
6D43: 8D 23 C4 61 STA CTTRAMP
6D46: A9 82 62 LDA #$82 ;ENABLE 6522

 INTERRUPTS
6D48: 8D 0E C4 63 STA IER
6D48: 58 64 CLI ;CLEAR
INTERRUPT
 MASK
6D4C: 60 65 RTS ;RETURN TO
CALLER
 66 *
 67 *INTERRUPT ROUTINE
6D4D: 8A 68 INTERR TXA ;SAVE REGISTERS
6D4E: 48 69 PHA
6D4F: 98 70 TYA
6D50: 48 71 PHA
6D51: A9 02 72 LDA #$02 ;CLEAR
INTERRUPT
 FLAG
6D53: 8D 0D C4 73 STA IFR
6D56: A0 00 74 LDY #$00 ;INIT REGISTERS
6D58: A2 04 75 LDX #$04
6D5A: A5 FB 76 LDA OUTPRT ;CHECK FOR END
OF
 DATA FILE
6D5C: C5 FD 77 CMP ENDPTR
6DSE: D0 20 78 BCC CONT6 ;IF NOT THEN
 CONTINUE
6D60: A5 FC 79 LDA OUTPTR+1 ;CHECK HIGH
ADDRESS
 ALSO
6D62: C5 FE 80 CMP ENDPRT+1
6D64: D0 1A 81 BCC CONT6 ;IF NOT THEN
 CONTINUE
6D66: A9 00 82 LDA #$00 ;IF END, TURN
EVERY-
 THING OFF
6D68: 8D 20 C4 83 STA DURPHON ;STORE PAUSE

 PHONEME
6D68: A9 70 84 LDA #$70 ;ZERO
AMPLITUDE
6D6D: 8D 23 C4 85 STA CTTRAMP
6D70: A9 00 86 LDA #$00 ;CLEAR BUSY
FLAG
6D72: 85 FF 87 STA BUSY
6D74: A9 02 88 LDA #$02 ;CLEAR
INTERRUPT
 ENABLE
6D76: 8D 0E C4 89 STA IER ;IN 6522
6D79: 68 90 RET PLA ;RESTORE
REGISTERS
6D7A: A8 91 TAY
6D7B: 68 92 PLA
6D7C: AA 93 TAX
6D7D: A5 45 94 LDA $45
6D7F: 40 95 RTI ;RETURN FROM
 INTERRUPT
 96 *
6D80: B1 FB 97 CONT6 LDA (OUTPTR),Y ;GET DATA
6D82: 9D 20 C4 98 STA BASE,X ;STORE IN
SPEECH
 CHIP
6D8F: E6 FB 99 INC OUTPTR ;NEXT DATA
6D87: D0 02 100 BNE CONT7
6D89: E6 FC 101 INC OUTPTR+1
 102 *
6D88: CA 103 CONT7 DEX ;NEXT REGISTER
6D8C: E0 FF 104 CPX #$FF ;LAST REGISTER?
6D8E: D0 F0 105 BNE CONT6 ;NO, CONTINUE
6D90: F0 E7 106 BEQ RET ;YES, RETURN

ADDEMDUM

Page A-15, SPEECH-COMPOSITE DRIVER update as follows:

INSERT
After line 16: DDRB EQU $C402
 DDRA EQU $C403
After line 29: LDA #$00
 STA DDRA
 STA DDRB

After line 89: LDA #SFF
 STA DDRA
 LDA #$07
 STA DDRB

